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By Ernst Preiswerk

SHOCK POLAR DIAGRAM

16. Introduction

It is known that in llshootingfT** water under certain
conditions the velocity may strongly decrease for short
distances and the water depth suddenly inc~”ease. An un-
steady motion of this type is known as a hydraulic jump
(fig. 35). In this photograph the water flows from for-
ward to rear. In the forward part the water ‘tshoots.”
Over the entire width Of the channel it jumps to a new
water level and flo]vs Ivith considerably less velocity in
the sa,me direction toward the rear. The entire process
is practically stationary.

Hydraulic jumps occur only in shooting water; i.e.,
in water whose velocity of flolv is greater than the wave
propagation velocity. In order to show this, let us im-
agine the forward water to be at rest ar,d that from be-
hind there arrives the front of a mater wave which arose
from the openinq of a large sluice. If the wave were very
small it would move forward Ivith the basic wave velocity

~ SinCe, ho~pever, it has finite height ha - h~, it
moves to a first approximation with the velocity
——______________ _______________._.—____—_—
*~!Anwendunq gasd~namischer Methoden auf ~asserstr~mun~en

mit freier Oherfl&!.clle.l’Mitteilungen au: dem Insti-
tut f!m Aerodynamic, no . ‘7, 1938, Eidgenossische
Technische Hochschule, Z{rich.
(For Part 1, see Technical Memorandum No. 934. )

** “The term “shooting~l has “oeen used to de~ote the state
CIf flo~,~for which c/~h > 1. (See T.M. ito. 934. )
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“1 =AK=2V’ A/b2/%)*
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that is, more rapidly than ~, and also than ~gh2.
In this coordinate system, moving with the shooting water,
the wave is not stationary. The water may now be consid-
ered as moving with the velocity U1 with respect to the
wave. The latter then remains at rest in space. The wa-
ter ahead, however, is not at rest %ut has the flow veloc-
ity Ul, and this is greater than fil. It has thus

leen shown that such hydraulic jumps can “De stationary on-
ly in shooting water. If the wa,ve existed. in streaming
water it would, on account of its propagation velocity;
which in this case i,s lar<er than the flow velocity, tr~,vel
upstream. There would ,le the usual outflow from u]]per “to
lower level without shock.** A shock (or hydraulic jump)
in whicY. the wave front is normal to the flow direction,
is called a, right hydraulic jump. It naturally has the
property that the propagation velocity of the shock vnve
relative to the mater is equal and. opposite to the water
velocity a;head’of the jump.

More general than the right hydraulic jump, is the
less familiar slant hydraulic jump (fig. 36). The water
flows from left to riqht out of an open sluice. The wa-
ter depth decreases and the velocity increases. l’lhe
water flo17s from a cons”tant upper ;Vater level into a “oasin
with constant lower water level. Since the difference in
head is $reater than a third of t~he up:per water depth,
the water after escaping from the sluice receives, accordi-
ng to equation (42) a larger velocity than the basic rc.ve
Propagation velocity, S’O th??.tit shoots. It is thus pos-
sible that it accelerates so rnpidl,y that the water sur-
face of the flow’ becomes lo,,~erthan the lower mater level.
There is a portion of the f’lo17for which there is consid-
erable pressure rise over ,7.short distance. In this flow,
however, the jump does not t~,kc place on a ilormal to the
velocity but alonq a line oblique to the flOW direction
and we :have ,a slant jump. On the meeting of the rear nnd
forward jumps shown on the fi$ure, t:hero is a particularly
stron~ pressure rise.
——______________ ._-..-__
*Thi s form~~a is obtained from .a sinple a“ODliC~tiOn of

the continuity and momentum equations; for””-h:j—>hl , it-—
~{hl.naturally p,asses over ,into U1 = al = (See Lamb,

reference 1, pp. 30’7-3(3~,)

**Th”e term “s-hock” will be us6d inte’rchanqen-Bly with “hy-
11drauli c jump and naturally has nothing to do with the

compressibility of the mater.

I.. -.
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The slant jump, like the right, occurs only in shoot-
ing wat er. In ord,er.to. le. all.e ..to%%V.e..asimP}.5.9.VmSri-.
cal treatment of the slant hydraulic jump, we make the
assumption that the motion is entirely unsteady; i.e. ,
that the water jumps suddenly along a line - the jump
line - from the lower water level to the level after the
jump . The simplest case of such a jump is o%tained if a
parallel flow is deflected by an. angle @ (fig. 37). The
shock in the supersonic flow of a compressible qas has
been treated in detail by Meyer and Busemann (reference 2).
Here, however, it will appear that for the shock of the
shooting water, the analogy with a compressible gas flow
for k = 2, no lon~er strictly holds. The previous con-
siderations involved as assumption the validity of the
Bernoulli equation, which is equivalent to the assumption
that the flow was without losses. With shock, however,
kinetic energy is converted into heat. In a ~as flow this
again enters thermodynamically into the computation, where-
as with the water flow it is to 3e treated as lost enerqy.

1’7. Shock Polars

For the case of the deflection of a parallel flow by
the angle 13, the jump line is a strai%ht line through
the corner, making an e,ngle Y (fig. 37). For z very
small deflection 13—>9, the two following limiting cases
are pOssible:

1. A right jump; ?’ is then a right angle.

2. The flo}v goes through undisturbed. This is the
limiting case of a jump whose effect approaches zero. The
jump line passes over into the ~Iach line through the cor-=
ner, Y in this case being the Mach angle.

We shall take the x-axis such that it has the direct-
ion of the velocity of approach c1 ● The components in
the x and y directions are thus u~ = c1 and vl = 0.
Let the water depth before the jump be hl, the velocity
after the jump C2 3 its components in the x and y direc-
tions, Ua and V2X The water depth after the jump we
shall denote by ha; Cn ,and Ct , the components of the
velocity normal and tangenti~.1. respectively, to the jump
line. Here, too, we shall distinguish ma~nitudes before
and after the jump by the subscripts 1 and ~, respectively.
As control reqion for setting up the continuity and momen-=

.,.-.. ,.,,,. , .!!!!!. 1. I...

_—. — —



~.
N.A. C.A. Technical Memorandum No. 935

turn equation, we choose the region ABC DA (fiq. 37).

With the a%ove notation, the continuity ecluation
reads:

hl cnl = ha cna (71)

The momentu~ equation for the direction normal to the juv.p
for the width AD = h, states that the decrease in out-
goinq momentum by that of the incoming momentum is equal
to the force (a,rea times pressure):

or, rearranged :

hl C;l + q h12/2 = h2 C~a + g h22/2 (72)

‘iVritinq finally”-the momentum equation for the directioil
tangential to the jump

there is obtained, taking account of the continuity equin.-
tion (71):

Ct 22 et”

1. c.

(73)

,During the jump only the component of the velocity
normal to the line is changed, the tangential comyonent re-
maining unchanged.

As in the ~as flol,v,it is convenient alSO for the
treatment of the hydraulic jump, to pass from the field of
flow to the velocity plane. Taking account of eo,uatioil
(73) , there is obtained the diagram shown in figure 38.
The reqion of the flow before the jump is in t?.levelocity
diagram represented by T. After the jump, P IS the
point of the hodograph corresponding to the flow. The ju~p

itself is represented by the transitio-n from T to P.
The direction of the jump line in the flow is qiven in the
hodoqraph by the normal to tha segment TP, since this
has. the direction of ct.

,.
For a fixed velocity of approach, cl, that is, for a

— ,.—.— ,,,-.,, ,,,,,..... .—.,, ,,,,,.-, ,. . , ,,, ,,,.,,,,,,.-, , ,,, , ■✌ ✌✌✌ ✌
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fixed point of the hodo~raph !!?$ there are obtained for ‘
various deflection angles p; various end states, l?.
The totalit~-of”all” b,ri-d”iiates-~vhich’ corr’espon-d to a “fixed
initial state, form a curve, the IIshock polarll (fig. 38).
If the initial state T is changed, tlien””toeach point
T, there corresponds a shock polar.” The entire “family is”
the shock polar diagram (fi’g. 39). In the supplement, the
latter is drawn for air on chart 3, and for water on chart
4.

The equation of the shock polars v = f(u2) will.7
now ‘oe determined. We start from the foilo:ving five equa-
tions:

1. Continuity equation (71)

?-* Momentum equation (72)

,7,. Ener%y equation*)

(74)

We also need the two geometrical relations:

**
Cnl U-1 (Ul - .,

4. ––– =
u. )

cna (u, -u2) u~ - v2~

***
CJ. Cn 1(Cn; -Q =u~(ul -u, )

(75)

(76)

In the five equations referred to above, there occur the
varia”oles cnl, cna, hl, ha, Ul, U2, and Vc. Eliminating

the first four, there is o%tainsd the ea,uation of the shock
polar. (See equation (77). )

In order to carry out this elimination, we first su’o-
stitute in equation” the continuity equation (71):

~----~-----------------------"--"--------"--""--------------------"------
From the energy equation (9), we have:

Zq hl = 2s4 ho - c12 = ?g ho - Ulc (since VI = O)

Substituting the critical velocity a*l before the jump

(equation (42)), me have:

2g hl . 3 a~z - U12 (74)
(For footnotes ** and ***, see p. 6.)
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ha . u~ (UI - Ua)
——. —.- —-— ——-— (I)

. . i; (U1 -“U2) U2 - V22

Sul)stituting the continuity equation (71) into. the momentum
equation (’72), there is obtained:

We thus have:

2g hza = 2g hla + 4 hl cnl(cnl - Cnz )

whence

h. 2() 2ghl + 4Cn (Cr ‘Cno)
(cnl ‘cn2 )/~~h12 =

1 --:_L_—..--—
hl) = 1 + 4hl Cnl 2qhl

Substituting in the above the relations (74) and (76), we
obtain:
——————----------------------------------------------------- ———

(Footnotes from p. 5)
** From fi~ure 38, ~!e may read off’ directly the two equa-

tions:

and their difference is:

Similarly from figure 38, it may be seen that

(Ul - J’ ,: = (Cnl J2-1-v. - Cnm (b)

Dividing equation (a) by (-D) and solving for the quotient
Cn,/Cnl , we obtain the above relation (75). This relation

must naturally exist since the three magnitudes Uls U2,
and V2 , completely determine the figure 38.

***From figure 38, we read off directly,

Cnl (cnl-cn2 ) = (Ul Cos c) (Cnl-cnn) =
.
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Only the positive root applies, since the water depths Ill

and. hz, and hence also their ratio, are naturally posi-
tive. We obtain:

(II)

Setting finally the two right sides of equations (I) and
(II) equal”to each other (elimination of hc/hl) and solv-

inq the relation thus obtained for Vza, the required

equation of the pol,ars is finally obtained. as,

2
‘2 = [U1-U2]

F’-u1J(’a~’-u,2 )’=’-=lu~+3 ‘12)]( 77)

Substituting in the above 72 = va/a*l , lio = u2/a*l ~.nd
U1 = ul/a*l as nondimensional velocities referred to a*l

the equation of the polars becomes:

[fi~-z,] [Z,-ii,
i

—-—— -
792 _ (%-til~)/(3-4 iil fi2i-3fil~)j (770.)G—

“L

These are the curves f(-ii2,;2, fiJ = o with ill

as parameter drawn in fis;ure 39 ~nd on Ch[Lrt 4. They are
similar to the shock polars of .an ideal sas (chart 3) , “out
show a characteristic difference. Whereas for the moxi’mum
velocity the shock polars in both c,ases become circles,
the latter pass throuqh the origin for water while for a
gas, the origin is not attained.

In the case of a right jump, Va = O. If we denote
the velocity after the jump by Uag (fig. 38), equation
(77a) for the latter becornos:

whence we obtain :
————————— _____________________________ ______.__________————.—

*From (a) there is obtained:

E2g = iil (3-i112)/(3-4iiltifig+ 3iilo). If this equation
is squared, multiplied through by the denominator, ~ar.d ,ar-
ranged, the resul.tinq expression may again %e divided bY
(ii~ - fi2g) and there is obtained a quadratic equation for

% .gii. iVith the positive solution (773).



N.A. C.A. Technical Memorandum No. 935

(’7773)

The values computed from equation (’7’7b)are collected in
table IV. For an ideal gas the relation analoqous to” (’77-0)
may “De written in very elegant manner:

.

=1 u2g = 1 (Prandtl) (77C)

Only for the ‘case iil =1 does (77b) accurately a%ree
with (77c).* Otherwise the right hycira,ulic jump leads to
no simple relation like the normal s-hock of a gas. Within
wide limits, however, equation (77c) may also be applied
to water. (See values of ill liaq in table IV.)

We wish further to show that a very sr.all jum~ has a
jump line which in the limj,ting case is a Mach line. From
the triangle TPU of figure 38,

tan Y = (ul - u~)/~2

I’rom the equation of the shock pola,rs (77a), we have:

v==:.%]2=----—------::-=-–----—------ (77d)
~tiJ

,._.-———— .———.—..——— —-—.-..——---.—.-—
Ti2 - ‘i, ~ (3-=1’ )/(3 -4fi~ 3~+Zti.’)

A small jump is ottained if fiz—--+ii~. The root in (’77d)
then approaches 1 and the entire expression becomes inde-
terminate. By differentiation of numerator and dcnom.ina-
tor with respect to the critical variable ii2, there is
obtaiiled:

Vie then have:

--------------------------_.-----.-..--..------..---------+-----------

*For :1 = 1, the shock polar shrinks, however, into a
point (fig. 39). The only possible state after the jump
is thus 52< = 1. For this case we no longer have a finite
jump ‘out then the <as flow also agrees with the water floy{.

I
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On the other hand, for the Mach angle a
,...,—...—,...,.. ...

sins a.= “(al;ilja (i)
,,,

For the wave velocity al , we have :

al2 =ghl (2)

The energy equation (9) is

u12 = 2q (ho-hi) (3)

As refere~ce velocity, we choose a; . For this equation
(42) applies

(4)

Eliminating from equations (1) to (“4) the magnitudes al,
h0> and hl, there is obtained for the sine of the Mach
angle m the relation

Compari son of (a) and (b) then shows that

(sin y)uq=ul = sin aQ

18. Water Depths in Hydraulic Jump

Up to now we have investigated how the velocity
chan;es in the case of a hydiaulic jump. In this section
we shall treat the water depths more in detail.

For a flow without jump, the energy equation (9) holds
between c and h

C2 = 2q (h. - h)

where the total head ho is a constant. In the case of a
jump a portion of the ~C1lletic e-flergyof the water is con-
verted into heat. For this reason the total head after
the impact - which, to distinguish from ho, we shall de-
note “oy ho! - is smaller than it was before. For the flow
after the jump, the relation het~!een the velocity and the
water dePth is given by the energy equation in the follow-
ing form:
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The new tctal head hol is constant along a streamline

but nfter the jumlp may vary from one streamline to anot~-er.

For gases (reference 2*), a clear picture of the pres-
sures in the flow is o%tained if the pressure is plotted
as thir?! coordinate over the velocity plane. For adiab{o.t-
ic flow there is thus oltained in the U,v,p spcace a sur-
fn.ce of rotation whose ~:!eridian section represents P ~s
,afunction of c:

2 2k P. ~’1
- (p/po)

(k-l )/k
c = ————— —..—

k- lpo~ 1 (3a)

For the two-dimensional flow of wp,ter with free sur-
f~<ce, the m~<.gnitude h~ corresponds to the :oressure p
in tlhe gas flow. If tve plot ,~.hovethen uiv planti, not

the vator depth hut the va,lues t s :qhti/2, we shall fikd
——.———.

for the water in the u,v,t space the same relations that
hold for a gas in the 17.,v, p _smace.

The re~~resentation in the snace isu,v,Sh2/2 _ not
very suit?.ble for the yr,?.cti.crlcor,putatio:a of the jump.
Nevertheless, we shall first learn the properties of this
representation n %ecause it ‘~;ivesa very clear ‘picture of
~fi-~e~ltire hvdra~~lic jump process. as regards the velocity
~.nd tine w,atrr depth simult.aneousl y.

In tht--flow of mater ~pj.thout disci~ation, the water
depth h ~wnd hence gh2/~ , deoends not on U a-ridv in-
divi dv.call:y, 3ut only on the absolute v~,lue of the veloc+

d
———— .-——

ity c = u~ + V2. 7’lottj.n$ t above the U,v ~l<anc,
there is obtained n surface of rotation. Let us consider
its meridian s~ction t = f(c) (fig. 40), :n3SCiSSa c,
~rdincde t. Prom the Bernoulli equtation (9), we have:

h=hc- C 2/?< (78)

(79)

The ch,nr~.cteristic sk~;pe of these curves of the fourth de-
qree (fi;. 40) which in our nroblem have a physicr.1 sense.-—__________________________..-—..—.,______.______ ——— .....__.—”_-_._—___..———-.———
*
Buseme.nn, in Gasdynamik, pp. 374 and 439.
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only from A to B, may e,n.sily be understood from,,fiqure
“41;---whchchSI1OWS the yarabola (’78) an-d--it-s J!square’! (7’9).

For each total head ho f there is one such curve’.
The family of all these curves we shall denote as the t,c
diagram (fig. 42). As long as no jumps occur along a
streamline the relation l~etween t and c, on account of
the constant total head, is
family.

Given by a fixed curve of this
As soon as jumps occur alon~ the streamline, the

t,c point on one curve Il,jumpslrto another t,c curve ,

Because the new total head for each jump becomes
smaller th,an the previous one, we come each time to a curve
lyin< closer to the origin ,and not the reverse. . To the
curves of constant total head ho 1 = constant, ~~hich <ive
the relation between the *<&2/~ ~Lnd c for the zero loss
flow, there correspond the a,diabatics in the gas flow,
these being the lines of coi~.stant entropy, s = constant.
For the ideal gas, these arc affine with res~-iectto the
c axis but not for water.

The right hydr(aul.ic jump m~,y ~~ry simply be stu~.ied
in the t,c diagram. Let 17.scompute first the slope of
the tangent of the t,c curve to thtn axis o.f ,abscissas.
From equation (79) ,

dt c’—.- ..=__
dc 2<

- C ho = - C (ho- c~/2g) (80)

and with the ener+y equation (78) this slope becomes

d.t =
z<

-cl-l (81)

We shall, furthermore , compute the intercept of the tan-
gent on the t axis, which is

QY=QP.tanT=c(ch)= cah

On account of t ~ <h2/2:

0Y=QY+OQ=hc2+<hz/2 (82)

PhysicaI.ly both the slope of the tanaent dt//dc and the
intercept of the tanqent on the t axis have a meanin~.
Through a vertical ,area in the flo~v normal to the stre,~m-
lines and whose width is equal to the unit of length there
flows per unit time the volume c h. The magnitude h C2
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in equation (82) represents, except for a constant factor
p, the “momentum flowing throu$h the same area per unit
time , and the term gh2/2 similarly, except for the con-
stant factor p, represent’s the pressure force on this
surface.

For the right hydraulic jump the continuity equation
(71) is

The momentum equation (72) lecomes:

hl.c~a + qh12/2 = ha C~2 + gh22/2

(710,)

(72a)

These two equations, compared with (81) and (82) state the
following:

1. From (71a) and (81):- The tangent at the t,c
curve at the point t~,cl before the jump, has the same

slope as the tanqent at the point ta,c~ at the t,c
curve after the jump.

2. From (72a) and (82),; The t intercept of the
tangent at t~,c~ is equal to the t intercept of the
tangent at t2,c2.

Together’ they simply state that ~oth tangents are one
and the same straight line PQ (fig. 42)0 If the magni-
tudes t and c are Riven before the jump, the right hy-
draulic ,jump is represented in the t,c diagram by a jump
-from ~(t~,c~) on the tangent to the t,c curve through

this point to Q(tz,c2), where this tan<~ent touches an-
other t$c curve .

Since as a result of a jump, we arrive at a t,c
curve which lies nearer the origin than the t,c curve be-
fore the jump, it may be seen from figure 42 that the hy-
draulic jump is possi}le only for points 1? before the
jump which lie on the curve to the ‘right of its point of
inflection. This is precisely the case for shooting water
since, according’to (80),

dat/dc2 = 3c2/2g - ho

Jkt the point of inflection this must be equal to zero, so
that

C2 = 2ghol’3

I
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This is the limiting velocity for streaming and shooting
water. ,.. . . ....... ,.. — .-—

Let us consider the slant jump. This may no longer
he drawn in the t,c plane; we require the U,v,t s~?”ce.
Plotting the values gh2/2 perpendicularly alove the u *v
plane , there is obtained for the case of a flow without
losses the surface of rotation of a t,c curve . We shall
denote such a surface as a !It-hillll (fig. 43). For each
total head ho~’, there is one such hill - each lying with-
in the other. As long as no jumps occur in a flotv, all
possible corresponding values of U,V and @2/2 are, on
accou”nt of the constant head ho, given “~y a fixed t.-hill.
AS SOOn as a jump occurs along a streamline, corresponding%
values of U,V and t jump to a new, sr:aller t-hill, vhich
corresponds to the nelv tot,nl head ho ‘. After the junp,
‘nowever, the relation is ag?.in given by p. fixed new t-hill.

Let P(cl,O,Shl 2/2) dei~ote the point in the u,v, t
space “Defore the jump; Q(U2 ,Vz ,)rh2s/~) after t’ne jump
(fi%. 44). For the <eneral slant jump there is obtained
in the U,v$t space a clear representation similar to that
for the right jump in the t,c diaqram. This representat-
ion will include the right jump as a special case.

1. The slo~~e of the tangential plane at the point P
of the t-hill before t’ne jum,p is, in the direction ml,
equal to zero, and in the direction rl , equal to the
slope of the meridian; i.e., equal to the slope of the t,c
curve which, according to equation (81), has the value

hCll” The slope of this tangent plane at, the :point P

in the direction FQ thus becomes:*

tan al = Cl III cos Cl = cnl hl (83)

The point Q lies on a tf-hill. The tangent plane
has, in the direction mz the slope zero, and in the di-
rection r2 , according to (~1), the slope hzc~ . The
slope of the tangent plane at the point Q of the t!-
hill in the direction 7q is thus:

(84)

—————__________ - _..-__. _____________________ ..——.-.
*
The slope Of a plane in any d.irect,ion is equp.1 to the

slope of the plane in the dj.rection of’ drop multiplied. %37
the cosine of the angle between that direction and the
corresponding direction.
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Comparing (83) and (84) with the continuity equa,tion for
the slant jump (71), it is seen that the tanqent plane
at the t-hill at the point P %efore the jump in the di-
rection >Q has the same slope as the tangent plane at
the new hill at point Q after the jump in the same di-
rection ?Q .

2. Let us now compute the slope of the segment TQ

in space to the u,P plane. The height of the point Q
is ta = qh2z/2; that of P is tl. The slope of PQ

then becomes:

tan 03 = (tz - tl)/(cn - Cn
1 2)

Since, ‘however, P and Q are the points before and af-
ter the jump, the continuity equation (’71) and the momen- ,
turn equation (72) are applicable. Suhstitutina these two
equations in tan 0“, there is o“otained from (72):

and with (71) this becomes:

= hl C: - hl cnl cna = hl cnl (cnl - cna)
1

Hence

tan cr~= (tz - ‘~)/(cnl - cn2) = h~ Cnl (85)

Comparison with the result found under 1 shows that the
segment ‘P—Q has the same slope as the ts,n<ent plane at P
and Q in the direction 2-Q●

The segment 7Q thus lelongs to the two tangent
planes and, as a common lii~e of these two pla:~es, has the
property that it is. tangent both to the t-hill and the
tr-hill, This result would alSO have been found by deter-
mining the line of intersection of the t!To t,an<ent plar.es
at P (Siven by ml and rl) P;*d at Q (:iven by
Ez an d ra)g There WOuld tilen have been obtained the
straight line ~~ as the line of intersection.

The genera3 hydraulic jump is thus represented in the
U$v,t space as follows: Let P be a point before the
jump. Drawing throu~h this point an arbitrary tangent at
the t-hill (tho only restriction on the choice of this
tangent is that it must naSS Within the t-hill), the point
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indicating the state .aft~r ‘the impact ivill be found where
this -tangent. touches. another t-hi.11..of,..hehefamily. To the
degree of freedom of thetangent corresm.ends the degree of
frseciorn.of the deflection angle p. Th~ projection on the
U,y plane of all .pos.s:iblep~ints of Contact Q of, the
tail~ent of a fixed point,, P is the already computed ‘!shock
polar’! through P.

‘The right hydrauli’e”jump is 03tained for a direction
PQ w~tb the an~lc cl = O. Figure 42 simply shows the
vortic,ll section with c1 = O through”the t-hill family.

BY the intensity of a jump we shall understand the
ratio of the total head 3efore the jump to the ‘nea,dafter
the jump, this ratio being a measure of the ener$y loss.
‘The intensity is thus greater the more nearly the angle ~
bet~~e~n ~~~e s~~oc~<wave front a:fldthe iaitial direction ap-
proaches a right angle, since Cl then becomes smaller
and the tan%ent F’Q of the t-hill (tota”l head ,ho) at P
““touches t l-hills ‘at Q (total head hot)” t’hat lie more to-

ward the interior. The riqht hydraulic jump has the maxi-
mum iiltensity.

It may be remarked further that the point Q of an
arbitrary slant or right jump as the point of con’tact of a
tl-hill is that moint of the strai<ht line ~Q for which
the new total he;d ho! is .~minimum. Each jump thus is
S13.ch.that t?he encr~;y 10ss becomes a naximurn. For the
i(?.efil,?;a~,the surfaces corresponding to the t-hill are
surfaces of constant entro:py, and the shock is such that
the increase in entrop~r is a maximum (Busemann).

The line joining all possi%lc points of contact of
the tanSent at a fixed point P is the hydraulic-jump
curve in the U,v,t space, It is a plane curve, its pro-
jection on the u,v ylane “oeing the already computed s-hock
polar.

There 5.s an cnt.ire far~ill,of shock curves in space
(parameter point P). In their totality they form a. cer-
tain surface.. This we shall denote as the shock surface
in t’le U,v,t s“~ace. :T’orpractical computation of the
jump, the projections of the following three families of
curves on- the u,v plane are found convenient.

1. The curves of intersection of the shock surface
with the tangent ~olanes of’ all points P(u,o,t); the= give

D-
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the familiar shock polars (fig. .39”). .

2.- The curves of intersection of the shock surface
with the planes parallel to the U,V plane; that. is,
contour curves. These are the lines of constant water
depth ha (fig. 45 and chart 5).

3. The curves of intersection of the shock surface
with the family of t-hills. These qive the lines of con-
stant total depth after the jump; that is, lines of con-
stant energy loss (fig. 46 and chart 4).

Lines h2/ho = constant: Prom the five equations

(71), (72), (’74), (75), and (76) with the variables Cnl,

h hz,cn~! 1, Ul, U2, a-ridVz, there is obtained an equa-

ti~n of the form “F(u2,v2,ha ) = O if the four magnitudes

cnl’ c hnz~ 1$ and U1 are eliminated. These are the curves

of constant water depth after the jump. In order to ob--
tain these curves the elimination was partly carried out
graphically. The method used will be briefly explained
in what follows.

Trom (71) and (72) there is obtained:

whi ch , with relation (76)

= gh12/2 + hl U1 (UI - U2)
or

(h2/ho)2 = (hl/ho)2 + (4,/3) (3/2gho) (hi/ho) u~(u~=’~c)

Su%stitutinq the critical velocity equation (42): a~z =
2qho/3) <ives:

(h/ho)2= (hI/ho)’ + (4/3) =I(;l - tiz) (hI/ho) (86)

Solving for 52:

ii2 . ;1 - ~ (h2/ho)2 1
J

- (hI/ho)’ /~$ ml (hI/ho)’
L JL -

We still need equation (74), which reads:

(86a)
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Substituting (42) in the above th”ere is obtained:
,,=-.

1
hi/ho = 1 - ~@ (87)

“ /ho”, two methods were em-In order to draw the liiles ,a2
ployed.:

a) Assume a fixed value ha/h. = k and various val-
ues nl for the va.ria%le. To each iil there corresponds
%y equation (87) a value hi/ho . With al, the corre-

sponding hi/ho a-rid.the fixed ha /ho , there is obtained
from (86a) the velocity component ii~ after the jump.
The point on the SI1OC]Cpolar throu.qh El which has this
a’22ciss3 c~, is a point of the curve ha/ho = k. By

v:xrying 51 there is oltain~d the complete curve ha/ho =k.

b) 13etcrmine the values ha/h. alon< an arbitrary
str~ight line in the U*V plane. (The straight line
tllrol~<h li = 1, y = o was taken.) Assume ill; l!lc.~;cureV
at the ~oint of intersection of the straight line with the
shock polar for Tll; su”~stitutinrg i~l, the corresponding
value ill/h. obtained. from equation (87) and the above
determined value of ~i~ in equation (86) gives the value
of ho~:lo at the point, of intersection. By varyin~ ill
there is obt,ained h2/ho along tlhe entire straight line.
From those VRIUeS tb.erc are obtained b>? interpolation
points of the family of curves h2/ho = constant.

In particular, t!~e values of ha /h. m.ny be computed
for the right hydraulic jump. We have:

(ha/ho)’ = (hJ/ho)’ + ~ (hI/ho) iil (:1 - fizg) (86?J)

Substituting in the above the values for Iiag computed
from equation (77b), there are obtained the water-depth
ratios h2/ho given in table IV for the right hydraulic
jump .

The r,aximum :Vater depth in the state after the jump
is obtained from equations (86b), (87), and (77b) for the
jump which starts from the values al = 3/JTT that is,
for hi/ho = 2/5, Uag = 3/2 ~%, and is found to be ha/h.
= 4/5, and her/ho = 19/20. We thus have the highest
point “of the above described shock surf~ee in the U,v,t
space.

~ ..- . .. —
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:19. Energy Loss During Hydraulic Jump

The ener$y loss during the jump hears a simple rela-
tion to the intensity of the jump - that is, to the two
total heads %efore and after the jump. In the flow over
a horizontal bottom the potential energy is a minimum if
the water depth h is zero, If we set the potential en-
ergy equal to zero, then for a mass of water m at a..
depth h the potential ener<’y is P = mg h/2.

Since the kinetic energy at points of rest is equal
to zero, the energy loss AX which occurs in the hydrau-
lic jump, may, %e computed as the difference of the poten-
tial”enerqy at a point of rest befor~ and after the jump.
For the mass of water m, this becomes:

AE = mg (ho/2 - ho~/2)
ho

Dividing by the ener~y before the jump, E = mg ~–, the

relative energy loss is o%tained as

Ae = AE/E = 1 - ho~/ho (88)

This is the relative energy converted into heat. I?or
water, it is to he considered as ’flost.f’ In a,qas, how-
ever, ~vhere the heat content is the magnitude that corre-
sponds to the water depth, the total heat content remains
the same ‘oefore and after the shock. For the gas, the
heat arising during the shock is not IIlost]lenergy. The
enerqy equation is the same before and after the shock:
C2 = 2g (iol - i) =2g (iO-i).

Now will be computed the curves of constant total
depth hot after the jump. We start from the Bernoulli
equation which for the flol~ after the jump reads:

This equation divided ly a~a = 2gho/3, <ives:

(c,/a~)’ = 3 (ho’/ho - h2/ho)

and solved for ho I/h. : .

(89a)

_2*)
hof/ho = hZ/ho + ~ c2 (89’1))

———_...—_——_————______________________ ___————_—__-——————.—...-
*~he values 52,52,72 are the velocities referred to al* ;
for example, 72 = ~/a*l , c~g = u2g/a*l .
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,From the alove formula th~ curves ho ‘/h. = constant ‘(fig.

“’”- 4“6)“’~iere’drawn. ‘simi-l&r’%d t-hose” fbr” “h2/ho- = const-ant. The

- following methods were’”ey,~loyed.: *
,! ,.

“1● The values ho ~/h. for the ‘right hydraulic jump -
th>,t is, “along the u-axis’, (V2 =.,O) - ,are o%tained by
suhst”itutinq the previously computed Values h2/ho an d
U2g ((’7’7b), (8611), (87)) in equation (89b). They are

O.lSO given in table IV.

? Along the circle., ha/ho = O Ea may be re;ad off

direc~~y, and from equation (s911), ho ‘/h. 1 —2=~c2.

3. Along general ~.rbitrary curves - in particular,
along circles about the origin (Z2 = constant) , and along
the curves given in fi~ure 45, hz/h. = constant - the v’al-
ues %2 and h2/ho may be read off, and from (89%) we
have ho ‘/h. alonq these curves.

4. Points ‘of fixed curves hot/ho = k may also be
directly computed, To each h2/ho there corresponds with
the assum~d fixed ratio hoi/ho = k, a value 52 ‘from
equ~tion (89a). The intersection of the circle with this
value of E2 as r,adius, and the origin as center with the
corresponding ha /h. curve gives a point of the required
curve hoi/ho = k.

BY ineans of the methods giveil above the curves of
constant energy were drawn, i-n fi.qure 46 and” on ch,art 4.

Si.n.c”eill a gas the heat content after the shock at,.
poznts of rest is still the name, the critical velocity
which for an ideal gas is computed as

is a constant r,agnitude in the entire flow plane even when
shocks occur.

In a water flow, however, it is to be olserved that
the andoqous critic2.1 velocity for water is not constant,
equation (42) being valid:

. 2
,. 3 %hoa*” = _

.“., 1
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This is constant only if: the total head ho is constant;

that is., in a flow without. hydraulic jum~s. If these oc-
cur, however, we have seen that the total head is constant
only between jumps, %ut for each discontinuity, !Ijumpstl
to a new value ho!, so that at the same time there is a
jump, in the critical velocity - the latter after ‘the jump
assumes a new value a*2, which is smaller than a* :

1

the ratio between the two %eing:

a*/a~ .
m (90)

2

The change of the critical velocity (the limiting ve+
locit.y of streamifig and shooting water) during hydraulic
jump, has the following important consequence:

Let the critical velocity %efore the jump be a*l ;
the flow velocity c1 (point 1? in fig. 47). After the

jump,. let the velocity be C2 (point Q). PQ is” a shock

polar! As a result of the jump, the total heat and hence
a *Z have become smaler than ho and a*l , respectively,
It may then happen that in case C2 is also smaller than

a*l, C2 nevertheless %ecomes larger than a*2. This

means that the water continues to shoot after the jump,
even if C2 < a*l , There exists a curve ca/a*D = 1 (fi%.
47). Accordinq to whether the point Q is without or
within the area bounded by the curve and the u-axis, ‘the
water, after the jump, is shooting or streaming. For a
gas this limiting curve, on account of a*l = a*2 = a*,

is a circle about O.

The curve ca/a*2 = 1 that holds for water, is found
in the following manner. Substituting in equation (E39b)
the relation (90), we have:

2

1 hoi/ho (c2/a*2)hot/ho = h2/ho + ~

c./a*2 = 1,Putting ~ there is o%tained the equation:

hof/ho = (;) %/hO

From the family of curves ho !/h. = constant., and h2/ho =
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constant , that curve along which this relation is satis-
:fied, is““drawn. ‘Tlii-sis the r-e-qui’red-”l~m”i-ting curv”e:’

Since hydraulic jumps occur in sho.otingwater onlY,
two cases are possible: 1) Shooting water goes over after
the jump, into streaminq water. 2) The flow is shooting
als,o after the jump.

All right hydraulic jumps are followed by streaming
water after the jump.

If the velocities are plotted in the characteristics
and shock diagrams to ~.n al)solute velocity scale, then to
each total head would correspond, its own diagram? All
these wou~d be similar to one another. If, however, we
plot the nondim.en~ional velocities (referred., for example,
to a*l j) only a. sinqle ?ia’gr~,mis required. It is to be
03served, however, that in the shock diagram after the
jump (~cint Q), we deal with the velocity C2 referred to

a*l. If, however, the further ch,~.nqesin velocity are de-

sired - whether Of the characteristic diaqram. of a flow
I,;ithout losses, or of a new jump - the velocity C2 must

be referred to a.%n, c’2/a*.. This is given in the

hodograph by the -ooint
b. &Xb!::~”

47). It is, obtained
from c2/a*l :; ..L .

-,. . by a~l/a*2, that is,
from (90):

~’or this reason the curves of constant total heaQ_R~t&~
~he jump (fig. 46 and chart 4) are denoted by ~ hofTho
instead of by ho ~/h. as parameter.

In order to avoid having to pass from Q to Q! af-
ter the jump ~Q , the shock polar could also have been
defined as the geometric locus of all points Q! whi ch
correspond to a fixed point P. There would thus he lost,
however, the property of the shock polars, that the nor-
mals to their chords p.re pr.rallel to the shock wave front
in the flow.

20. Summary

We have seen that the flow of’ a compressible qas with
k=2 for the case with shock is no longer analogous to
the flOW of water on a horizontal bottomo From figure 46
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it nay. be seen, however, that the energy loss Ae = 1 -
ho !/h. is extremely slight over a large region. For

shocks “(hydraulic jumps), for example, whose state after
the shock is given ly point Q lying in the hatched re-
gion, the relative loss is less than 1 percent. On account
of this small shock loss the analogy of the two types of
flow is still satisfied to a first approximation also for
the case with shock.

In order to have a comparison there has been drawn on
figure 48 a shock polar for water and the corresponding
shock polpcr for a gas (k = 2). There is also given the
correspondin~ characteristic - the same curve for gas with
k=2 “and water - in order to show that for continually
decreasing shocks, the “two shock polars approach one an-
other and tend to coincide with the characteristic.

ELEMENTARY SOLUTIONS OF FLOWS

,.
For flotvs,hounded on tl,vosides, in yhich hydraulic

,jumps occur, there are a number of problems which will ‘oe
treated in this section,’ “

There ~.l:is,es$for ex~mple, the question as to ~~hat
occurs wb.en a disturb,~.nce IVave encounters a jump wave
front. For the limitins case of a very sm~.11 jump, this
must naturally approach the cr.se of two intercrossing’ iiis-
turbance lin:~s. Other yro”olems Pure the crossing of two
hydraulic jumps of different i’arnilie’sor the eacounter of
ttvo jumps of’ the same family. Furthermore, it is possible
frr two flol?s of different directions that start from the
same state of rest or from ~TTO independent states of rest,
to meet. During this meetinq it may happen that both nre
pcarallel fl.o~l:sin the same direction ,and fOrlila vortex
sh?et at their surftv.ccof separation. ‘The-nthere arise?
the further question ns to what hr.ppens when a disturbance
wave meets such ?. vortex sheet,

21. Level Drop about r,n Zdge

Fi%ure 26* ShOWS the level drop ,a”ooutan ed%e as ob-
tn.ined by the characteristic method. In what follows, it
mill be directly computed for water$ the computation bein<:
...........__.--- ----

*For figure 26, see P?.rt I, T.M. No. 934.

I
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the same as that carried out by Meyer for gases (reference
.,..?),.*,,,,,. .—

The origin of Coordinates is taken through the edge S
and t’he coordinate axes as shown in figure 49. In the three
equations of continuity, irrotational motion, and enerqy,
polar coordinates are substituted in order that the prop-
erty of .a flow about an edge - namely, that all magnitudes,
as water depth h “and velocity C(Cr,Ct), on a ray through
the edqe are constant., m,ay be simply expressed. The coilti-
nuity equation (11) in polar coordinates is

(91)

The equation for the condition of no vorti,city au/aY -
a~/dx = o becomes:

(92.)

Expressing now the fact th:;.t,all ma~;nitudes are functions
of d alone, vie obtain from (91) and. (92), if we also add
the energy equation (9), the three equations:

d(h C )
h Cr + –––––~– . ~

d3

dc
Ct - ddr——..-— = o

(93)

(94)

(95)

where Cr, ct , and h are to le considered. dependeut varia-
bles. Eliminating Cr and 8, from. the three equations,

there is obtained:
————————— ___ ____ ________ ________________...—.._—__——————-.--——---——
*The flow will not be investigated in detail here, “DU’b

mainly the change in the Ivater depth on traversing a dis-
turbance wave. Since for the disturbance’.waves the. de-
flection angle of the velocity is the characteristic fea-
ture, there will also be determined the change of the wa-
ter depth as a function of the velocity deflection.
**From (95) we have cr dcr/d8 + ct dct~d~ + g dh/d~ = 0.
This multiplied by h and replacing &cr/d~, ,according to
(94), “oy c~,. gives: h crct + h ct dct/d6 + gh dh/d.8 = O.
Multiplying equation (97) by . , .

finally obtained; (gh - ct~) ~~/,d~’l~~~btract~ng , t~ere ,s

I
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The velocity component Ct * normal to the Tay throu?h the
edge, is e~u.al to the wave-propagation velocity (sound ve-
locity in the gas). ‘These -rays are thus the l!ach lines
of ‘one family.

Substituting (96) in (95) there is also oltained the
radial component Cr of the velocity ~,s a function of the

water depth h:

We now have also the a.n.qle‘+ ~~hich the streaw.line forms
with the straiz;ht ray through S :

—.—

V = (tan- l)(ct/cT) = - (tan-l
h//h.

) &-z-?-h]lio— .——

The flow is determined “!jy(96), (97), antL (98). Ve still
require h. as a function of O. “From (9’7)

Substituting (96) and the above equation in (94), there is
fouild

3
do=-+

d(h/ho ) = + ~~, ,,d(311/ho-1)— ————— __________ -————.————.——.—
2 7--- (99)

J(2 - ‘——3h/ho)h/ho
2

J 1- (3h/ho-l )n

Integrating, there is obtained:

l!)= ~’~ (sin-l) (3 h/h
o - 1) + constant (9’3a)

For the flow shout an ecl~e S starti?-~ from 2 parallel

_——__________________ _______ _______ ._.._......_______— ______ --———————

*That the sign of ct (96) must be ne~ative mo.y readily
be seen. In figure 49 all magnitudes are so drawn that
they have positive signs in the given coordinate gystem.
The flow is from left to riqht, so that for it ct < 0.
Yor the same reason in (9’7) Cr > 0, as may also be found
from the fact ‘that the flow about the edge (decreasin% d)
is equivalent to a jet expansion and that this in the case
of shooting water must le,ad to a sinkinq in level as a con-
sequence, so that the sign in equation (99) is correct.
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flow with the Mach number M = 1, the constant is

:“”6”--’3””’ “ ‘“

The velocity c forms tvith the direction of the x-
axis an angle w , where ‘w =* + $, w “’oeing the an<le
of deflection of the velocity from the direction of a:p-
preach. Only because we had laid the x-axis in the direc-
tion of approach, is this deflectionanqle w here- equal
to the angle v of the velocity diaflram. Figure 50 shows
h/h. as a.function of w ($ equation (98) .+ J equation
(99a)) for the flow lVhich starts with M = 1. The values
are collected in talle 11 (p. 57).

The change in the deflection angle is

Takin~ d~ from equation (98):

d~ =
d(h/ho)- ———_———___— .-___——____————_———..-...————.——— —.—

2(1 - h/ho) fi/ho) (:?- 3 h/ho)

and d+ from equation (99), we have:

cm———____ = L!E -_-lzI-Q”15i____
d(h/ho) 2 ~~~ (1 - h/ho)

(1’20)

This eque.tion may also he o’btnined from equation (40a) if
the expression 2gho - 2q’h is substituted for & since
the velocity curve of ;1 flow about arl edge is a character+
istic. The values computed. from equation (100) are given
in t~.ble III.

22. Refraction and Reflection of Waves at a Vortex Sheet

We sh~.11 assume that a flow (fig, 51) has a vortex
sheet along AB. Above and ‘oelow the sheet the flow is O.S-
sumed parallel with the velocities c.GUI fand c~l .* The

water depths hal Canal hbl are of equal magnitude. F-t~r-

thermore, let the Mach numbers on each side of the vortex
————————— _________________ ______._..__....__.-—..———...-——--—..—_-—
*The first subscript (a~ b) distinguishes the upper from
the lower flow. The second sulscript (1, :1, z) tLenotes t~~e
corresponding field for the flow under consideration.
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sheet l)e greater than 1. In the lower flow no disturbance
line is assumed. The line s is assumed to he a. disturb-
ance line in the upper flow, and it meets the vortex” sheet
at B.

~’e consider nom the conditions that hold for all these
pro’blems :

1. At each point of the flow and also at B, “there
are two families of disturl<nnce li-nes, so that from 3
there can start out at most the two disturbance lines Sf
and tl. The Mach line t cannot be a disturbance line be-
cause it lies upstream of the region of influence of the
the assumed disturbance s.

2. The velocities ca3 ‘Cand CI13
must be par~vllel.

3. The water depth in the field .-”3 must be equal to
that in the field 33.

The above three conditions are sufficient to d,eter-
min.e the angle of deflection, produced by the refracted
wave s’ and the reflected wave t ! in the flow. I’or
small disturbances , we have :

Hence
*

ha” = ilal + (dh/dw)a AWa12 (a).

hb3 = hbl + (dh/dw)3 A~13 (c)

In addition to these three equations, we have the condi-
tions:

hal = hbl (d)

h“a3 = hb~

~wb = Awa13, ITO
13

(e)

(f)

where &:J = AWa12 – AWa23**ra13 (?)
—————————— ________________ ____________________ ______________ ..-

*AWalG denotes the angle of deflection of the velocity

of flow a when it cros~es the disturbance wave s from
reqion 1 into region 2. The AW are taken positive in the
direction in which the deflection lies if the wave under
consideration is a wave with level drop.
** (See p. 2’7)

—.
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From the alove seven eq~l.ations with the magnitudes:
-. !.. ,,. . ,.

hal, ““han, has, h~z, h~a, Au.)a12,“Aw~:3, AU+3, ALUb13,..—— .-—-

(dh/dW)a, (dh/dw)b
——__ .—— _.-— ——-

where those underlined. are to be considered as given, all
the unknowns may le computed. In particular,

/5w = Awa12 - Awalsaz3 (101)

and

Awbz3 = Awa13 = Awa12
2--——-——..———————_—..————--- (102)

[3.+ (dh/dw)b/(d2~/d~~~)a]

In the a-oove formul~. (@h/dw)b/(dh/ dw)a will be mrad.e:non-

dimensionnl by introducing the totnl heads hoa (and ko”D.

(1OZ)

~?:~er~ Y-(J a.rlii Ya are written, for ‘~ricfr.ctss,as the i~~.2.-

mera,tor e.ilddenominator, respectively. From equation (1$70)

2 1- lb/ho———..————..———-——— -—. .——.—.-—...——
y ‘~:- &/ho J$ “ b./ho

Su%stitut’ing the ~ach number ~ in place of the water
depth ratio h/h. (~./l=~ ~2/aG = 2 ho/h - 2), there is ob-
tained:

Y =
M2—————-—— (104)

J~132
——_——— ______

————-———————————.———————______—__________.__—=----- .—--.-.——— . . .._——..—..-———

**(~rom pa 26)

Here we must subtract since if Awa ~~ and Awaz3 have

equal si.%ns~ s a-rid t~ are “lot~hrr.refactions or ‘Ioth
condensation.so The angles of deflection of the velocity
then act in opposite sense ‘oecn,use s and t ~ are weaves
of iiffercnt families.

~.– –- .
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Equation (102) may then be written, finally:

AuJ Aw . 2
a13 . __.:&~ . _———. -

Atial~ Aw 1 + yb/Yaal~..——— ———— —_.. —

and ediuation (101) ~cleconles:

A(ua A{I~_ /“-1
———2.3. =

3’~ sa
1 + _...:3J= –.– ——— ..----

AW al~ L(:Jal~ Y.D7Ya+ >
————— ——.—...——..--.—

(106)

For clarification, two numerical. examples will he
computed:

—— ...—._——.-——______________ ——— —..------——-,-—----- —----,---—---.-----.,-----— --—.---.—-—-.—
A.ccort,inq 10

to 1. Ma=2 , H~=3 L. lia=3, M>=2
equat!on———— . _—_____________________________,_____.. __& .-..——.--——.-..-.-—....-.. ....-.—

(104) Ya = I
I

Z.18

t
——

(105) AWa13/AU~~.lG = I
—---
-I-.84 I +’1.16

I
+.16 -.16

----------------------------- J--..-----.-_..--..--.-_-_.._L__....._._.-._________________

These tvo examples .-.re schem~.t~c-:lly represented. in f’ig-
ure 52 for an :.pproachin+ level drop wave. ?..s~,:ell,~,s for
<a level rise wtn.ve, The numbers rritten ‘oeside the dis -
tUr”Oi?bnCe lines are the deflection angles referred to the
deflection angle of the ~,varon,ching disturhn,nce,_-

si.on y

1.

2.

3.

consider this :)ehav iormore in ~xener~,l. In
is shown a,s a function of M ● ~]~e expr es-—— _____

~lic - 1 is to Ye invest i:;e.ted for M> 0.

l)) for IJ—>m as y=ll

c) J-z> L!> 1; y deci-e:~ses
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Y is ,r.lwaj~spositive m>y>2. To ench y there corre-
,.,
spend two po’ssible Mach numbers - M’. ‘All possible ratios.
of any two values of y are positive: @ < (Yb/Ya) < ~.

Thus , according to equation (105)

O < (&LIa13/AWa;a ) < 2

This mea-ns that the wave passing throv.sh and. refracted by
the vortex sheet, is of the s,nme type as til~ incident we.ve
and has up to twice as large a deflection angle as the in-
cident wave, Furthermore , the reflected iiistur%mce line,

on account of - 1< (Awa23/Awala ) < + 1, h,.s at mOst the

same deflection as th”e incident d.isturbance$ hut may ‘De of
the same or opposite sign. The following table summarizes
the various possible cases:

—— ..-—.

Y,2 = Maa/~Ma’ -1, yb = V%’/~b& - 1,

p= 2/(1 -t yb/2) and q=~ -p, 0< :),q< 1)
———.-———___________________ ____ ______ ____ _________,...

his> 1, Mb>l !A~(] /&va,In

---------------------- ------------------1---:~----------

to

II

1!

1!

11

11

II

!1

–—–––––––––––––––L–––––––––––– .- . . .._-._ –!–____,.–...–.-....---.

In fi%ure 54 are shown several’ clarifyin~

————————.-...——

A[JJ2G2~ /AWal ~
——.————-...———

-1 to

o “

~ “

o “

-1 !1

o l!

~ “

o 11
--———————.-——

sketclhes.

The first series holds for Mb > JT, tl~e second for

‘% ‘ ~’r~~ The numbers beside the disturbance lines are

the values Aw/Awa12 . Since the equation

.,

. . .

—
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-—————— ...-- ————

Ma2/JM~ .. i ~ VI%’/JM~ -1. .
,,

has the two positive solutions

there are two cases for which a, disturbance wave passes
through the vortex sheet without any reflection. The
first case is self-evident. The two flows a and b are
equal to each other. In the second c~,se, ‘however, a vor-
tex sheet is present. Nevertheless the distur-oance wave
is not reflected “cut passes tbrouqh - thou~;h.refra.cteil -
and has before acd after, the same deflection ar~sle for
the velocity.

Since the hydraulic jump loss is still small, e-~en
for rather large jumps, the ratio of the Me.ch numbers on
the encouiiter of two flows th~.t arise from. the same state
of rest, acd of which one has experienced a jump while the
other is ~.?ithout loss, is in the neighborhood of one.
Ya is then approximately equal to ~b arid.it follows

from e~ua,t~ons (Ios) and (106) that t:he main l>OrtlOn Of the
incident ‘~?avesqoes throu%h the vortex sheet ;ild only 5.
much smaller part is reflected. *

23. l?loms with Hydraulic Jump

a) Critical angle.- To each Mach num-oer Id, or to
each nonfiimensional velocity 7,
(shock),

“Defore a hydraulic jump
there corresponds a shock polar to which a, tan-

gent may be drawn from the ori~;in. The angle between this
tan%ent and the u-axis is the maximum an%le by which the
flow with the corresponbinq Mach number may le deflected.
——--——~——_________ .-__., ______ ,..____-. . . ... .. __________ _______________ ..-..———

*A numeric~.1 example that illustrates this is the follov-
in$: 1. LI = 1.75; ?. hot/ho = 0095‘?. for the flow which
experie-nces a jump. Then with hbl = ha,l ,?,nd hbl /hor ,

we heave M% = 1.68. With these two Mach nuqbers, there is

obtained from equations (104), (105), and (106), dependinq
on whether a disturbance l~:avem.ects the vortex sheet from
below or above:

(Awz~Au112) = 9.93, nnd 1.01, respectively
and

(AUJa3/AUJ1a) = 0.01, II-o, m, !1

1
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I’or if the angle of deflection were 1=.r~~er,the jump could ‘
,---.—no longer .go,..pe.,s.t,,the ed.ge.,.hut would travel upstre,am o?:

the edge. If the side boundaries are in fiilitely long, it
tr=.vels upstream to infinity and only streaming water rt?-
.m?.insat the edge (su%sonic flow). If the boundary of the
deflected jet is finite (see fig. 85), the jump also tr,v.v-
els upstre,am for the o.hove critical angle hut always l.c-
mnins at <afinite distance from the obstaclo.

Besides the criticnl anqle, which indicates whether
a jump is at all possible, there is mother somev~hat small-
er limiting anqle, ‘also dependiilq on the Mp.ch number of
the flow - nn.mely, the deflection ?.nql.e,for which the
Mach number M after the ,jnrnp,is Ox!’lctlyCq.uralto 1.
(See alSO fi<. 47.) In fi.~llre56, the critical ,v.nslei~
shown as n function of the nondimensional velocity -EL
“~efOre the jump.

b) Hydraulic ,iump im.~.zll~$i.~on Q._&x&_Y&L-- lf s
jump, for example, as ~ w~zve of the lower i’a.rcily,impin~es
on a fixed wall, only waves of the upper family can start
out from. there, The reflected I{aves mus t make the veloc--
ity after traversin~ the incideilt,and refiected waves
have the same direction as before the illCident Wave. From
this it follows that the reflected n-ave must also be a
jump with the same deflection tangle as the incident wp.-~e.
Figure 55 shows an ex~.mp~e, Let the incident jump be ch.z,r-
acterized ‘~y the ,jurnp A3 on the shock polar through A.
BB ! is t-he c“h.an%oin velocity due to the ,jurlp1.0ss; ~P[
also fiqure 47. IVo then havu the junp ~tc, and. fint~l.1-y,
the adjustment CC!

In flows with hydraulic jum~v, in addition to the two
field coord.inxtes, we need the depth referred to a fixed
depth (for example, that of the approach flow) as a third
coordinate, in order that the depth lines of” the water
surface mcc.yle drawn.

As for the ~i,mple slant jup-p, ~~ner~ is also for each
Mach number a, critical angle wh’ich indicates the upper lim-
it of the deflection of the jump ,against the wall in or-
der that reflection may ‘oe possible.

In fi:;ure 55 is dr,nwn t~he limitin~ curve, outside of
which the impinging jump must lie in order t~n.a,treflection
may be possible. There is also shown, with the aid of an
exzmple , how this limiting curve is found. It is determined
%y the condition that the reflected jump qives rise to its
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greatest possi%le deflection. The critical reflection an-
gle of the reflected. jump is approximately half as large
as for the ordinary jump (fig. 56).

c) Hvdraulic Jum’n imnin~~h:m———— ..... _—-———-.— on a f’ree jet %oun.dary.->————...-=——-._..-
At the free jet bpundary the pressure must be constant.

,.-.—————.-—.-.-

This condition is satisfied if, at the position where the
jump strikes, a family of waves with level drop starts
out ● If the jump were free from losses, the deflection of
the velocity at the free jet bouudary would be twice as
larqe as the deflection by the incident jump, tand the mag-
nitude of the velocity would not change. Actually the de-
flection is somewhat smaller, degendin% on the losses and
the velocity decreases.

d) Encounter of two h.vdr.aulic iYELIE_Q~...~~EXEE~E_~Q~E:E:————.__-—_——.——_—.-——..—__—-..--.———
ilies ~crossin~.- Vlilerep.s,for the impact of ?. jump—————- ————___
against a fixed ~lall, only a single condition on the direc-
tion must be satisfied, and’for r.n impact n~ainst a free
jet boundary, only a cond$tion on the pressure, ~a ~he case
of the intercrossing of two jumps, conditions on both the
pressure and direction must le simultaneo”’lsly satisfied.
Only if”the angles of deflection of the two intercro~sin?
jumps are equally larqe, does the problem lead to a con-
dition on the direction only and hence to case (b).

The solution of the ~eneral c~wse is o’otained 3.y trial,
The direction of the velocity, after the two junps, iS ob-
t,=.inedto a very good approximation ii’ the jumps are con-
sidered ,as though there were no im.pnct losses. For the
determination of the water depths and. the velocity on the
hodo$raph, the four different impact losses may subsequent-
ly be read off and corrected for. For drawing accuracy
this is entirely satisfactory. In whet follows, we shall
consider the process theoretically in somewhat %rernter de-
tail (fig. 57).

In the velocity diagram, let the impact comiil~ from
,above be given by AB, t~Le corresponding adjustment’ by
BBI, and the impnct striking from ‘~elow, by Accl. After
the crossing, there is a jump, ~l~~f on one side, .?.nd
BIDDI on the other. The points D1 ~,nd TJl rust , on
the one hand, lie on the same ray through O, ond on the
other h,and, the mater depth for D! (losses of A after
33, ,and of ~! after D); and the water depth for E’
(losses of A after C, mid of Cl a.fte.r E), must be
equ,al to each other. Siilce, however, the product of the
values hoi/ho for the jumps A3 and .31D with very
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great accuracy is equal to the product of the values
-for the shocks

ho r’/ho
AC and C.!E,. -the .points ......D! and Et co-

incide; and furthermore , the vortex sheet starting from
the c,rcsssi’ng“position, is very weak. ,

“e) Encounter of -two h~cl:raulic jumps qf the same .Q,gj.llz
(overt aking~’.- The jump AB with the adjustment BBt and
the succeeding jump B!CG! are given by the deflection an-
gle of the wall (fig. 58). The two impacts are waves of
the same fam,ily (in the example, the lower one). They meet
at the point ‘ P of the flow. All possible waves which
pass through this point are drawn. At this point ,we have
a meeting of: 1) the two givcil impacts; 2) the Mach lines
a, “o, C* and d - the latter causing no disturbances, From
P there start out: 1) the resultant impact PQ; and 2)
the disturbance line PR. Thc streamline passins through
1? is obtained ,as a vortex sheet in its upstream lyin%
portion. The impact PQ and the WaVC E’R are determined
by the condition that, a-DOVC :ind below this vortex sheet
the water depths and velocity directions ,a<ree; i.e. , the
points E! and D of the velocity diagram must lie on the
same ray through O, an d hx I must bc equal to hD . The
impact 1.0ssss for the two jum-?s AB ::.nd ~lc follo17ing
e,ach ot:her are, to%ether, 2Jr:,al_ler than the sinvle impact
10SS of the jump AE. (If, txstea8. of two discontinuous
&eflectiopAs, there were i~a~-yvery small ones, the lo~~er
flow would finally pass over into a flow without dismipta-
tion, while tlhere would al’wa:’sstart out a finite jur!p
with Dissipation, from the mweting :~oint of all the dis-
turbance lines.) The product of the values ho ‘/h. for
the jumps AB and BIC, is thus nearer o-no th,”n ~o ‘/ho
for the jump AE- For this ree.son, ~1 roust lie nearer
the ori%in O of the velocity di.agrarnt:h.nn D.

In the example computed, the result was obtained that
the disturbance PR (line of the upnei family) is a level
dro~p wave to which, in the velocity ~.ia~ram, corresponds
the characteristic CID* The deflection caused by it is
ve ry small compared to the two changes in direction due to
the jumps. In most cases the overts.king of two ,jumps is
also computed with qOOd approximation by superposing the
deflection angles upon each otheri*—--—————____ .—__________ _____________..________...__—_—————..—_-
*In the examnle the first deflection of the w,n’11is 19.4°,
the second, ~.8°. The velocity deflection by the result-

0.ant jump is 27.3 . If the deflection angles of the two
jumps were simply added and the sum taken as the deflec--
tion of the resultant jump, the error would have been 1°
in 250.

IIL
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f> The three mossihle cases of the encounter” of dis -———..—_____ A_____...——— —.____—._____——.._--__———..——-._—-— .-——
turlance waves with h~draulic .Iumps.- Figure 59 shows the
three possil)le cases: 1), 2), and 3). In the first case
the disturbance line t:rosses the jump, This is a limit-
ing ‘case of the inter crossing of t~o jumps (section d)..
Practically, there occurs no vortex sheet, and after the
crossing both the jump and the disturbance wave deflect
the velocity with extraordinary accuracy b;~ the same an<le
as before the encounter.

The second and third cases are both limiting cases tif
the ‘overtaking of two hydraulic jumps. Here, too, the de-
flections,may be approximately superposed, which means that
the reflected l~ave PR is neglected compared to the inci-
dent wave.

An idea as to the strength of the vortex sheet and the
order of magnitude of the reflection PI? may be o“Dtained
by a simple consideration:. The disturbance line meeting
the jump is imagined as a zero-loss rarefaction of the
same deflection angle of t’ne velocity as the jur,p. ‘lhiS
rarefactio-n is assumed to be concentrf:.te’don a single line
(fiq. 60) which, of course, is not actually the c~.se. If
the shock polars were characteristics and the jumps were
without losses, the jump and the disturbance i-:ol~ld then
%al.ante e,ach other at poiilt P, from which point there
would nOt’ start out then any jump ?Q ,
PR ,

disturbance line
or vortex sheet. For the actual jur,p these lines do

not vanis’n, however, and from them aiz estimate may be made
of t’ne order of magnj,tudc of the reflection that occurs if
only a small disturla.nce strikes P.g,ninstthe sl~ant hydraul-
ic jump.

Fip;ure 60 shows t?.leserelations by <an example (case
3). On crossing the jump from region A to region B iil
tile flow, the state in the velocity dir.gram jumps from A
to B on the shock polar AB with the corresponding% im-
pact loss. To B is added the adjustment B3!. l’ror.re-
gion B to C, a zero-loss rarei’action is crossed which
by assumption is coilcentrated on e. sinqle line, a~ld whose
deflection brings the velocity into the direction befcre
the jump. Crossing this rarefaction means for the condi-
tions in the velocity diagram ~, travelinq oil the character-
istic 31C. The waves PQ (lower family) with the ini -
ti,?$lpoint ~, <and PI? (upper family) with the initial
point C, must bring ,1’ooutthe condition that in the re-
gions X and D of the flow Iyhich nre se~par’nted %y tp~e
vortex sheet starting from P the -oressure and i~.irection



N.A. C.A. Technical Memorandum No. 935 35

.. . of flow are equal. These conditions determine D“’ and E
., in the velocity diagram.lying,on the characteristics CD ,

and AE, respectively.

The reflected wave PR (level rise) , and the wave
PQ (drop) , which in the case of equal and opposite de-
flection angles at the corners S and T give the devi-
ation from simple superposition of the deflection angles,
are both very ‘small compared to the wave
the jump.*

TP overtaking

g) Summary.- All flow elements with hydraulic jump
have the common property that a vortex sheet a~;ises which
may geilerally be ne~lected. To satisfy the conditions of
equality of pressure and direction on the two sides of
the vortex sheet, two waves are developed whose deflec-
tions are determined from these conditions. Especially
striking is the case where jumps overtake other ,jumps or
disturbance lines since in this Frocess all given waves
are of the same family; nevertheless: small waves arise of
the other family.

h) Application.- Let shooting water (M = 2) flow in
a chailnel of 24° deflection.** Let the deflection be facil-
itated through a vane ,at the center of the channel , so” that
the ‘oanking of water on the concave side of the wall mp.y be
reduced (fig. 61). The contour Of the vane is on the upper
side made up of a circular arc with short straight pieces
at the ends and a straight line at the lower side mnkinq
an angle of 12° to the directio-n of approach. The lower
wall of the channel i“s assumed to be a circular arc. The
upper” (left) boundary of the channel is deternlin”ecl.so
that the flow at the upper side Of the vane is without
losses and at the en”d ‘of the vane there is ~,~ain produced
a parallel flow with M = 2. This side of the flow is
thus a clear channel ~~hich deflects a parallel flow in the
simplest manner.

At the enct of the ‘va.ileat both sides, arises a hy-
draulic jump since the vane angle there is not zero.
———————— ___________ ._._ ___________ ___________________ ...
*In the. examnle of figure 60, the jump ailgle is about 25°

for hoi/ho =’0.90. The irnpinqing wave has the same change
in direction of the velocity (250). The deflections of
the reflected jump and of the deviation, however, amount
to only 1°. Only 4 percent of the waves overtaking the
jump are reflected.
**T:nO v. Karman (reference 4) in 1938, considered the de-
flection in an open run analytically.

L
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These two jumps are determined from the pressure and direct-
ion conditions for the upper and lower sides of the st’rearn.-
line ‘starting from the trailing edge.

X-SURFACES

As previously remarked, the position-determining pote:2-
tial itself is not required if tkle velocity di.ag’ramznd the
flow are drawn simultaneously. We wish, ho~:ever, to see
Ivhat the appearance of the X-surfaces (formulas 24-3].) of
several flows is like.

24’. Parallel Flow

in the entire field of flow the velocity components
u and v have the fixed values “Uo‘ ‘o” On account of

dX=Xudu+Xv dv = X du + y dv

X thus has a fixed value Xo. The points of the X-surface

all coincide at the single point ‘o’ ‘o’ Xo. The slope

of the X-surface, however, is not constant, being given
accordi-ng to equ,atio-ns (2?..a)by the coordir~ates x and y
of the flo~q: Xu = x; Xv = ye For an infinitely wide par-

allel flotv, it thus ta!ze.son all values.

For the X-surface of a parallel flow, we find a bun-
dle” of. infinitely many plane elements throu,gh a point.
The reason why this X-surface degenerates so strongly is
to be found in the fact that the inverse tran,,sformation
from the velocity field (X.,U,T) to the flow space
(O,x,y) for a -parallel flo,w is infinitely many-valued.
All flows whose transformations to the velocity space are
not reversible (parallel flolv and fiow bounded on one
side) , have degenerated X-surfaces. Although in these
cases O,x,y do not in-versely give uniquely X, u, v
there corresponds to each element @, X, Y, @x, @V of the

@-surface a a.uite definite element
,,

x, ~, v, Xu$ xv of the

X-surface and conversely.
.

25. Laval Nozzle for M=?

The X.-surface for the experimentally investigated Laval
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nozzle (fig. 77) is shown in figure 62. Its only discon-
ti-n’ui-tieslie at- the boundary since to each point U,V in

the interior”there corresponds uniquely a ‘point “of the
flow. In pa,rticu’lar, A a~d 3
described in section 24.

are points of the type

26. Orifice

Wc wish to consider the flow out of an orifice with
small back pressure (fig. 63). Let the parallel flow of
approach in the minimum cross section have the velocity
c = ~*, so that’ ~ = 1. TO this there corresponds in the
velocity diagram, the point Al- The first Mach line
which starts from. P strikes the edge Q, The first dis-
turbance line, ho,.~ever, that starts from F or Q, strikes
the symmetry axis in R (not in A), dependinq on the mag-
niturie of the increments that are choien for the fiistur”o-
antes. The level sinkinq a“oout the edge P ‘aa.sno effect
at the ed.~;e Q, and conversely. We first have about each
edge in its immediate nei<h-oorhood a normal lL>VOI drop
bounded on one side (sec. 21); the distur”oance waves start-
in~ out from P, for exa~~ple , are +iven by the normals tcj
the characteristic Ary? (dependinq on the chosen incre-
ment of the deflection an$xle). Analogously, the states
at Q are given on the characteristic AIB” ● The level
sinking proceeds up to potnts Sllc’has 3 ‘ and 311, who se
speeds OBr = UBJI, according to the energy equation, cor-
respond to the given lower water dei~th. (For a gas the
expansion proceeds until tb-e prescribed back pressure is
attained. ) The usual flol.v:~b~ut an edge (flow hounded at
one ed~e) holds until it impinges on the first disturbance
line RS or RT (fig. 6S). From there or, the crossing
family of disturbance lines is constructed as for the Laval
nozzle. .Along the AX axis the velocity is horizontal for
reasons of symmetry. In the velocity diagram it changes
from At to xl. It is further to. %e remarked that at X
the water depth is aS great as it.tvould be for a one-side
bounded flow about an edge if the fl-o~vhad twice as large
a deflection as that about P or Although the dis-
turbance lines (straight rays ) of t~~ one-side bounded
flows about P and Q are not superposed simply. as such,
the anqles of the velocity deflections are, however, super-
posed. The processes at each side of the axis are SUCh aS
though the axis \vere a fixed wall, as must be the case
since each streamline may be considered as a. fixed wall--

The origin of the coordinate system .x,y is placed
in the orifice cross section and in the channel center
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(point A of fig. 63). All points of the orifice cross
section PAQ have, in the velocity dia.qram, the sinqle
image pcint” ilr. Since along the entire distance PA Q
x= o, the X-surface at Al in the direction of the Yi-
n.xis, is horizontal. In the direction of the T-axi s ,
ho,:~e~er, it hp~s ~,t At all. slopes letween - y. < X,v< +

Yo . Since there is no constant value for x , ‘we Sha<ll
set X <at Al equal. to zero.

To the point Q of t,he,floIr, there correspond nll
points of ‘the characteristic ~1~11 of the velocity dira-
gram . ThG X-surface is thus of such character that for
all yoints cf AfBll, it 117.sthe slopes Xu = O ,n.nd. xv =

+Yo. The edqe of the X-surface, whose pro,jectioil is-
the characteristic ~r~ll, thus lies in a plane. The lat-
ter has, in the ~ direction, the slope Yo : ,a21d sine.e we..
‘n~.ve set X in A ! equal to. zero, it ~qnsaes throu~h the
C-axis . Nith its points Terticnlly ::.hove A’3”, %t !<ives
not only points of the .X-surface “out also the tall~~ilt
plnne to the surface p.t these points. Simil,q,rly, the pln.ile
throuqh the ~-a~is ~Vith t~le slope Xv = - J70 gives sym-
metrically points over ~lyl, to?ether with the tan~;ent
plane of the X-surface. Furthermore , this ~~rfe.ce h~.s,
above the Ti-qxis, ,ahorizontal tnn%ent in the =-direction
since the velocities nlonq the ii-axis (%” = O) in the
flow occur on the ch,znnel ~,xis ,an.dwhere y = ‘2.

The x-surface :~ppe;trsas a valley between the two
‘pIaaes described above, endinq at A’, ;~.~idwhich i~. all
section-s : = Constailt ranges through all slopes -yo<
xv< + yo.

Particul,nrly noteworthy is the “oehavior of the X-
surf~.ce l~~ithre~,mrd to the poip+t A! . The VO,lUeS Of X
itself are continuous. The slope in the 7 direction,
however, becomes discontinuous In A’ since, although the
surf<~.cee~:ds continuously in ,7~joint, t?ie slop~ still 5.m.s
all values bqtl~een Xv = - Y. .and xv = + y. (fi$:;.64).

27’.X-Surface of t,he F1OW a’bout an Ed+e

Since the flo~v a“oOut an e~.ge is ~, flOW loundcd on one
side , an! since it is d.iscontinucus at the edge, its X-
su.rface degenerates.

Since all the velocity vectors have’ their ends on a
single ckr.”rructeristic, the latter is the projection of the



iV.ii,.’C.A. Technical Memorandum No. 9“~5 39

X-surface. If, furthermore, we place the origin of the cb-
ordinnte system X,y in the edge S (fig. 49), then for
all po’ints of the hodograph corresponding to s (x = 0,
Y,= 0) - i.e., for .th’eentire characteristic, on account
of dX = Xud.u + Xvdv = X du -1-y dv, dx = 0; th~,t is, x =,,
constfant = Xo. The portion of the X-surface corresyond-
in$ to t~e point S is thus .a curve lying vertically .a’bovc
the characteristic at a, cOnstant height or, more accurate-
ly, an infinitely narrow horiztinto,l strip.

Furthermore, along a fixed ray throuqh S, the veloc-
ity components u and v are constant and therefore
(a%ain on account of dX =.x du + y dv), X = constant =
k for each ray through the ecl.ge S. The constant k for
all rays has at the edge, hcwever, the constant value k =
Xo . Thus for the entire flow a%out ac edge, X = Xo.
Since there is no constant value for the position-iictermin-
inq potential, ~~:em,ay set X,. = 00 The X-surface shrinks

into a characteristic.

To a fixed. ray through the ed~e there corresponds, in
the velocity diagram, ‘a sin~le point of the ch.zracteris-
tic. Since along this ray y/x and hefice /xv Xu is con-
stant, “out Xu and Xv themselves are variable, the X-

surf,ace at this point consists of a “oundle of surface ele-
ments.

The X-surface of the total flow a-gout ail edge con-
sists of a bundle of infinitely narrow surface strips
which lie .aloilg ,a fixed char~.cteristic in the U,V plane
(fig. 65).

EXPERIMENTAL INVESTIGATIONS

TEST. SET-UP

28. Measuring Channel

The tests were conducted at a flow tank of the Aero-
dynamic Institute of the Swiss Technical High School at
Zurich. The water used in the test was circulated ly a “
pump which delivered up to about 25 dm3/s. Fi%ure 66 shows
the test set-up. At 1 the water from the pump enters the
tank. T’hrouqh a screen 2, it is calmed and reaches the
straightening section 2, 3 on t’he lower side of the inter-
mediate bottom IIB, At 3 ~,iid~ are deflecting vanes. The
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water, after two deflections , reaches the honeycornh ~.

There the velocity is small compared to the velocities in
the test portion, the water %eing led from the approach run
6, where it is greatly accelerated, to the Laval nozzle in-
vestigated ‘7. The condition of a quiet flow of approach
is thus attained and the measurement of the total energy in
the minimum cross section actually shows that, except for
points in the ,immediate neighborhood of the bottom ,Rn.d.side
wall s , the total energy has a constant value over the cross
section to wittiin 1,percent..

Figure 67 shows the iilvestigated Laval nozzle 7 c%s
seen from above, and figure 68, as seen from the noz~le
end. There may also le seen the two side walls of the flow
tank. In the background may %e seen the honeycomb.

29. Measurement of the Depth

The shape of the surface (surface in space) of the wa-
ter flowin~ through the La.val nozzle was obtained by gaging
with a fine point (fig. 68). A horizontal cross beam on two
accurately horizontal lonqitudin,al beams and normal to them,
is movs,ble parallel to itself in the longitudinal direction
of the channel. On the cross be?.m is mounted a block, to
which t-he moint mova%le in the vertical direction is fixed.

Gaging H,ith the pin point gives measuring values which
are accurate to at le~ls,t1/10 millimeter and may “oe well
observed since on the f’incst contp.ct lTitY.the surface Of
the movinq T::ater, capillary ~aves ~.re set up.

30. Measurement O? the Total IEncrgy :IYld
of the Boundary Layer

in the theory of the chr.racteristics method it ;T:e.s
assumed that the flow was frictioilless. In the ,~.ctunl
flow, both at the bottom and ~,t the side walls, boundary
layers are formed as a result of the friction. In order
to avoid the resulting deviation ~rom the theory, the side
walls used. in eamputing the flow mere displaced inwardly
wit’h respect to the actuCll (Tc,aterical)w.qlls of the nozzle
Yy the ‘ooundary-l,myer thickness. Only a parallel displacem-
ent is necessar;~ since the mean thickness of the bound~..rj~
layer over the depth from the minimum cross section to the
nozzle outlet only sli~htly increases. (See fig. 73-0.)
Furthermore , the bottom was not lo,id horizonte,l but sliqht-
lY inclined to correspond to the incre’ase in the bottom
“ooundary layer.
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Figure 69 shows the set-up for the determination of
the total energy. ~~The cross-beam of the coordinate appa-
ratus runs across the picture, and to the left may be seen
a portion of a longitudinal beam. On the cross beam from.
left to right are:

1. The micrometer screw to which in the depth me:~.s-~re-
ments ,apoint has %een clamped and providod with ,a support ,
to which is fixed a glass pitot tube. The distance of the
tube from the bottom may thus 36 adjusted. This fine ad-
justment is used for the measurement of the bottom ‘~oundary-
layer thickness.

2. TO the same block, displaceable alon~ the cross beam,
is fixed a second micrometer screw which displaces a needle
vertically, for measuring the height of the w,ater in the
pitot tube.

T. . . ● Finally , on the ri$h.t is seen the mounting and adj-
ustment of the “olock which is used for r,easuring the
boundary l~yer at the vertical side walls of the nozzle.

130UlTDiKRYLAYER

Let b denote the depth of the water (fig. 70), c
the undist-ur”oed velocity at tile position x, S the ‘~ound-
ary-layer thickness, and p the pressure in the bound~ry
layer. &h, CC, d6, p.nd dp r.re the changes in these mag-
nitudes i’n passirig from the position x to the position
‘x + dx. The width b. .of the channel is assumed constant
and equal to unit length. Furthernoro, lot

~. and z~~ = ~.
c’/c ‘oe set

equal to Then for “a boundary layer with
aff’ine velocity profiles, ~ = f(!’1) is ,:.curve independe-
nt of c ,and 8, and the ml,a$nitudes a,, ~, y defined
by the following exproskions:

Y = (d?l/dt)~=0
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are constants independent of x. From these are computed:

The volume boundary-layer thickness 6V =as’

The tnngent intercept 6T = Y 6 (fig. 71).

An imoorta-nt result is obto.ined from the continuity
eq,u.ation ii connection with the ener::y equation. At the
position x in the lound,ar<v l,a:~er ,mildin the l~mdisturbed.
flow, the same arfiountof fluid flOWS throu~h as at “X -1-dx,
SO that

c(h- 8V) = constant

or in differential form:

c(h- 8V) = (c + dc) (h + dll - 6T - ‘&v)

By the energy equation (9)

there is obtained, elimina.tinq dc

ah = ––-...–-::~

1-
g(h - 8./)_—————m ———

c“

(107)

(108)

(109)

AS long as the volume boundary-layer thickness is small by
comparison with the water depth h, we may set h - &v ~ h.
Using also the relations gh=aa ar.d c/a = M,
(109) Iecomes,

equation
on dividing both sides ‘oy dx,

or, with (108),

(110)

(111)

The slope (dh/dx) of the water surface certainly never
actually becomes infinite. Since, however, the denomina-
tor at the right for M=l assumes the ‘value zero, in
.
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order t-hat the left sides of equations (116) and (111) may
....-. remain. finite, the boundary.-layer .sl.o,peda,v/dx for those

values of M must have the value zero. The points for M
= 1 are the critical points; i.e., those where the flow
velocity c is equal to the wave propagation velocity
fi~i The louridary layer varies in such amanne~ that its

thickness 8V in the neighborhood of the critical @osi-
tions neither increases nor decreases in the direction of
the flow.

‘Vhile normally a flow (for example, as a,potential
flow) is determined hy the ~oundary I,valls (tound.a,ry condi-
tions), and this flow then determines the course of the
boundary layer; the relations at the critical points, on
account of the great sensitivity of the flow to cross-
sectional changes; are just the reverse. In t)~is case the
boundary layer acts as a d.eterminiilg factor on the flotv.

‘Je shall now apply the momentum equation to a portion
of the %oundary layer. Let tile elementary region to which
the equation is applied be bounded by the contour shown in
figure ’70 by the thick line: bottom, vertical at x -1-dx;
boundary layer outer limit, vertical at x. The volume
per second flowing at x into the region is:

Vx =c(8- 8V) = c (5 - CC,8) = (1 - CL) c 8

The volume per second flowing at ~+dx out of the region
is ,

v = (1 .-m) (c~+d[c ~])x+ d.x

Thus the volume per secoa~. fIowin~ through the upper side
of tlhe re~ion is

dV = Vx+dx - Vx = (1 - a) (c d~ + 8 dc) (a)

This quantity transfers through the upper side a momentum
in the x-direction:

dil = C fJ dV= (1 - a) P C (C d8 + S dc) (’b)

The momentun flOW throu~h the vertical side at x is:

—
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Similarly “there-is .o%tain.ed the outflowing momentum thr”oti%h
the vertiealside at ~+,dx:

ix+dx = (1 - ~) t? (c.+ dc)2 (6 + d~)
..’ ,.

Hence the total momentum flowing into the region thro~~~h
the vertical sides, is

dia = ix - ix+dx = - (1 - ~) Pc (c d~ + 25 dc~ (c),.
.’

Throu?h the-bottoms urface no momentum entqrs the resion~

The external forces acting on the e.lernentary region
under considera,tidn in the x-direction are: 1).at the ver-
tical side at x: pg. (h - 8/2) 8; 2) at the vertical side

at x + dx: - Pg,~b + dh 6+d6
)(. -—-..—- d+ d~); 3) at the

2
upper side.: @’&’~;

Pg(\h+&-8- 2,’
and 4) at the bot-

tom:- T dx where T is t-he s-hear stress of the fluid at
the “oottom at the position x. All these forces have, as
the resultant force in the x-direction, the sum:

dK = - pq 8 dh -T’ dx (d)

We may now write the momentum equation, which states that
the rate of change of momentum in the re%ion corresponds
to a force that %al.antes the external forces:

,,
(e)

For the ohear stress, we have:

(f)

(TI is the dynamic viscosity, ~/P = U, “the l~in(jmatic vis-

cosity. ) Between the depth of the water and tie velOcitY,
holds the enerq:r equation (198):

Cdc=-= ~ dh (:%)

Substituting (f) and (g) iil (e), t’here is obt,ained the dii’-
ferential equation of the 3oundary layer:

(13.2)
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This equat’ion states that the rate of increase of the
.%ound.ary-layer thickness decreases as the ,flo~vis more ac-
celerated. 3?or very large acceler-ations the thickness
even decreases.

32. The Behavior of the Boundary Layer in the
Throat Section of the Laval Nozzle

If we consider the Laval nozzle at the minimum cross
section (throat), we have annroximately the relations in..>4
a channel of constant width. At a short distance ahead of
the section M<I; that is, M2 - 1< 0, so that from
equation (110), if the boundary-layer t~aick-ness increases
(d~v/dx > O), the water surface drops (dh/dx < O), and
conversely. If the bounclary layer would continue to in-
crease toward the critical positions instead of remaining
constant as ~ve have seen from (110), tile mater level there
would dron more sharply. The more it drops, however -
that is, -the greater the acceleration, the smaller the in-
crease in the bounfi.ary layer. A balanced condition is
thus obt,ained, when the level at the minimum section drops
so rapidly and the acceler,~tion becomes so l.a,r~ethat the
loundary-layer thickness no longer increases. There thus
remaiils an inclinn.tion of the ~,~ter surface even if the
side walls at the minimum crOss section have a small curva-
ture aild all effects of the latter vanish.

If, in equation (11P), for de we substitute dh from

equ~.tion (108), we have:

(113)

From the a’oove we obtain with d~~dx = O for the minimum
cross section a relation between the slope of the surface
~.nd.the boundary-layer thickness:

dh . i)c- .——.——.—— ....
-& y(pp . ~) g.fy’

(114)

A similar relation holds for a gas, the surface slope being
rePlaced “O:ra pressure drop.

Ill
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33. Tests on the Bound,ary Layer in the Throat Section .

The velocity profile of the flow at the channel cen-
ter on the bottom was obtained for vnriou.s total heads
(varia%le discharge quantities). The results are shown in
figure 71; 6T denoting the volume” boundary-layer thick-
ness, 67 the intercept of the tangent of the velocity
profile, and bi the momentum boundary-layer thickness.

The r.verased test v~.lues from figure 71 substituted
in equatj.on (114) ;ive d~/ d.x as a function of ho. This
is the continuous curve of fiqure 72.

The slope of the w~ter surface at the center of the
minimum cross section W-LS also directly measu~~d~ “these”
te’st :?oints also leing plotted in fiqure 72.

%4. Boundary-Layer V.nriation at the Side Walls

Figure 73a, shows the contour lines of the total meas-
ured 3oundary-layer thickness at the side walls. On fiq-
ure 73b is plotted the variationof the values av’eraged
over the water depth ,n,lonqthe walls. Tile boundary-layer
thickness is practically constant and only increases some-
wh,at at the end of the nozzle, The side walls of the noz-
zle used in computi~lg by t-he characteristics method are
shifted inward with respect t’o the real walls %y the amount
of this thickness.

35. 130ttom Boundary Layer

I’i<ure 74 shows the contour lines of the measured
%ound.ary-l.ayer surface ,at the bottoti. If this Ilhilll!is

reylaced by ,3 mean plane the latter has a slope in the
longitudinal direction of the nozzle of 0.8 mm/m. The

bottom of the nozzle was inclined by this nmount, thus ap-
pro,achii~g more closely the “theory which nssumes a horizon-
tpul bottom for frictionless flow.

From fiqure ’74 it may be seen, furthermore, that in
the region of the minimum cross section the slope of the
surface is ext,remel,v ~m,l~l in the direction Of the flow,
as must be the c.asc according to previous consideration.
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. . .

.TES.T 3ESULTS 01’ TEE DEPTH MEASUREMENTS
.. . ,. ,. ..

36. Hydraulic Jump (Shock)

,,
In a. series of preliminary tests, measurements were

also made on the hydraulic jump. The ’velocity of approach
at a corner had the Mac’n num-ter M = 2
zle).

(exit from the ~oz-
For various deflection angles P (see fig. 37), the

an.gle y of the shock-,~~<~e frcntand the mean water depth
ha at some distance after the shock, were measured. The
test results are s.howtiin figure 75.

’37. The ~:~.terDepths in the ~JinirLum Cross Section

.~heore~i~<~lly, the water-depth ratio at the minimum
cross section h*/ho Ghould r.ssurnethe value 2/3. l?iq-
ure 7Sa shows the direct me:lsurenent of the wp.ternsurface
for various total heads alonq the channel center in the
re~ion of the minimum cross section. From this neasure-
msnt were also taken the values dh/ dx which were used in
SOCtiOil 33.

On figure 76”0 are plotted ’the measured water depths
h* as a function of ho. For ail total heads that are
somewhat smaller than 10 cm, i.e., for the rr.tio

total l~e,nd
~~fi~~-~f ‘minimum cro SS

–––––––—–--–2.=-––––– < 0.5 ‘
section )

h*/ho has the const~ilt value 2/% to 1 percent. Only with
increasing total heads are the deviations somewhat larger.

38. Water Surface in the .Nozzle

a) Theoretical surf~.ce.- Figu~e——————_———_—______ ..—.- 77a shows the computed
disturbance lines for the h~?,lf-nozzle. Since the side walls
of ~-millimeter--thi ck sheet ‘brass shelved small deviations
with re~pect to” the nozzle drawn in figure 34 (straight
line QR, circle RS, and” m’ortion determined by them ST),
the actual wall in fiqure 77L and the corresponding %ound-
ary layer ~~ere ~p.id as ~ ~~asis for the determination of” the
flow ‘by the characteristics method. In order to obtain the
lines of constant ~Vater depth Ivith sufficient, accuracy, the
velocity deflection was chosen in steps of 1/2°.

— —
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On figure 773 are drawn the lines of constant water
depth and also the measu”red. depth contours for the total
head ho = 31.1 min.

“o) Measured water surfeces.-..———_———_-.—-_—.-.-———d.-—e For six different total
heads the water surface was o’btained with the apparatus de-
scri-oed In. section 29. In each measurement the flow was
sufficiently stationary. By polishing and cleaning the
side walls a condition was obtained where hardly any capil-
lary waves on the water surface appeared except for some
waves toward the nozzle exit.

l’igures ‘78a-f show the test results. All depth data
refer to a point in the minimum cross section 0.5 mm above
t-he ‘Dottcjn.. Since the thickness of the boundary layer for
the flow with ho = 80 mm is 8V = 0.5 mm, .the depth
measurements for this total head is directly comparable
with the theory. In the ot”ner measurements, corrections
were to “De made for h Of fron +0.05 mm for ho = 100 mm

to -0..25 mm for ho = 25 mm, depending on the total head
and the corresponding thickness, according to figure 71.

The symmetry of the depth contours to the nozzle axis
is well satisfied. From these measurements (figs. v8a-f)
the water-depth ra,tio h/’ho along the nozzle axis was o“o-
tained and conpared vith the theoretical (fig. 79).

39. Convarison of }~easure~ents with Theory and Conclusions

Fi<;ure 773 shows th.~.t for the total head ho = 31.1 nm,
there is satisfactory a~reenent between theory and experi-
ment both with regard to the depth curves and the ~o.gnitude
of the depths.

For the large total heads, 100, 80, and 60 mm, there
is, however, n deviation that is not to he overlooked.
The water surfaces for these ,heads h.av.e,in the lower por-
tion of the nozzle, a well-marked valley (figs. 78a,b,,c),
with an adjoining hill while, according to the theor=v of
the two-dimensional flow of shooting water, the surface in
that region should he horizontal. Also, the character of
the depth contours. deviates from the theoretical for the
large heads. In the first place, the two side valleys
move too slowly upstream toward the center Of the channel
and reach the latter too late. Secondly, they have in the
theoretically straight portion a break which ‘Decomes more
marked toward the nozzle end.

I
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‘i’?t.th decre~sing total head, ho = 60, 40, 30 mm, the
depth contours sho~Tmo..re.--~learthethe-theoretical appearance
and the water-depth ratios P.ISO agree in mag-nitude. I’ig-
ure 79 shows very clearly how, with decreasing water .tieptlit
the appearance of the surface e.long the nozzle axis tends
more toward the theoretical rind, for ho = 40, 30, and 25
mn 7 almost ,a~rees with it. ,.

Only for still smaller total ~ea.ds do the deviations
again increase on account of t~.e decreasing measuring ac-
curacy and On accol~nt of the ~e:latively increasing effect
of the bottom boundary layer.

The reason for the increr.sing deviation with increasi-
ng rater depth is proba~ly tO be found in the fact that
the ?.ssumption Of tile theory - namely, the neglecting of
dw/’dt, comp,ared with the acceler,~tion of g’r,avity, is no
lon~er quite satisfied*

It ms.y further ‘De seen from figure 79 that at the
minimum. cross section ,for all totnl heads, there is a de-
vintion which does not decre.nse with decreasing water
depth. This is the interact:.on discussed ii~ sections 32
and 33, of the boundary l-ayer mitb. the flow rutt-he critical
positions.

As long as the assumptions of the theory are, satis-
~ifj. d., tlie stationary flOw Of shooting water with free sur-
face may be determined by the che,ractari,stics method. It
is here a question of determinin.q the first ,npproximation
of the thr:ee-dimension,~l flo~v of an incompressible fluid,
,and thi s nay be computed as a two-dimensional flow of a
compressible fluid.

In the f’ollol.Ting,a collection of sevora,l flow photo-
graphs is presented. Figure 80 shows for a large total
head ho . that the water flows through the nozzle with ap-
proximately parallel flow at the ekit”. The capillary
waves are here desirab].e since the waves reflected by them
allow- tb-e shape of the Ivater surface to be seen.

—————.--————....- .—-- --.——’—.-—— --------------- _.._____-_—__ ______ ______________

*An estim.~te of the order of magnitude qives for the Laval
nozzle investi::ated

0.003 ‘1 ho = 30 mm

-. .-
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Fiqures. Sla-h show the flow at the nozzle exit for
constant total head ho ‘out decreasing water depth of the
lower water into which the nozzle empties. Figure 81a
shows tho right ‘hydraulic jump. If the lower vater is
tanked still higher, this jump travels upstream into the
nozzle a~d loses its ~ormegl.front in the interior rhere the
flow is no longer p,are,llel. In fiqure 81c the lower vater
level is still higher than the water depth at the nozzle
exit ‘. The tuo slant hydraulic jumps that arise, cross
each other. In fi~ure 81d, the’ two jet %oundaries are zl-
most parallel, vhile’in fi~uros 81e-h, the lo’rer water
level lies lo~~er th?.n the surf’p.ceat the nozzle end and for
this re,?.sonthere occurs a
‘te.xnlodos.

sinking at the edge and the jet
II ‘The end of the sinkin% - the dr.rkcr lines..

startinq from the efiqes which are at the same time the in-
ner ‘boundaries of the li~h,t reflections - m.~.,y‘De clearly
distinguished from the jet bound:ary, which is approximately
~iven “oy the outer “oound.,aryof the liqht reflections on the
water.

Fi+ui-e 82a shows a cylindric?,l ‘~ody which has some-
what the shbpe of a cutwater in the -parallel flow with
~f = 2* l’i~tire82b shows the same tiody from behind, vielved
o%liq.uely. Comparison of this picture with figure 83 (ref-
erence 5) shows to ~+ ~ur~prising deqree the ~ia~ogy Of’ the
compressible gas flow with the water flow with free upper
surf(ace. In particular, there should also le noted the
re~ion ‘oeh.indthe body.

The sane tapered loiiy produces, when set olliquely to
the flow nnd the deflecting angle of the flo”w is greater
than the critical shock angle corres~>ondtng to the a~-yproach
velocity, 7. quite different flow (fig. 84). The shock no
lon~er lies at the ed~e and the shock wave front is no
lon~er straight, but bent.

Fi~ure 85 shows another cutwatbr-shaped “~ody whose
taper Y1.n,lf’-anqleis :re.a.terthan the critical ~.ngle of t’~e
aF~ro<r.cb-flow. The shock separates from the edge and would
travel upstream to infinity if the sides deflecting the
stream were infinitely long.”’ Only because the “oody.has a
finite length does the shock--wave front remain stn%ionary
at a finite distance ~,he,zdof the body. The shock, how-
ever, has changed its character as compared with that for
the more t~.pered body. The front is curved and only at
some distance does it pass over into the form of shock ob-
tnined with the other body. ‘iPithloth flows (figs. 82 and
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95) the ShOCk decreases in intensity with increasing dis -
-tanc,e,,~ro,m the b_ody similarly on account of the finite size.,. ,,,.......-
of t’hc ‘%od~ri

Tr,mnslntion by S,.’Reiss,
li~.tion.-,lAdvisory Committee
for

1.

2..

3.

..

4.

5.

Aeronautics. ..
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List of Most Frequently Occurring sym~ols

~,

R,

v,

P,

1?,

m~?

i,

c1?‘

Cv”

k=cn/cv,

0$

x,

~3YYz9

r,t$,

A,w,

X,y, z,

U,v,w,

Csv$

cmax’

Ac,

a,

a*,

acceleration of gravity.

gas constant.

kinematic viscosity.

density.

pressure.

a“Dsolute temperature.

heat content.

specific heat at constant pressure.

specific beat at constant volume.

adiabatic exponent.

velocity potential.

position-determining potential.

rectangula~. coordinates in. the flOW space.

polar coordinates in the flow plane (x,Y).

curvilinear coordinates in the velocity plane,
characteristic coordinates

general varia%les.

components of the velocity in the x,y, and z.
directions.

polar coordinates in the velocity diagram (two-
dimensional flow).

maximum velocity.

velocity increment.

in gas: velocity of sound.
in water: propagation-wave velocity ~FC,

critical velocity.

-. . — .- —
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-——
U,v, c,..., nondimensional velocities (reference veloc-

ity a*; in hydraulic jump a*l the

critical velocity lefore the jump).

M = c/a, Mach number.

a,=(sin- I)(’a/c), Mach angle.

h,

ho’

ho! ,holl,

po,’To,io,ho,

T*,h*, O,O,

ul!cl~ hl,lll,

u2g,

A(X,Y),B,C,

a,b,c,

8,

w ,

Section 31:

water depth.

total head (water depth for c= o).

total he.a.clsafter hydraulic jumps.

su%script 0: stagnation state.

asterisk * : critical state.

subscript 1 : before hydraulic jump.

su”oscriyt 2: after hydraulic jump.

velocity after ri~ht hydraulic jump.

coefficients of linear partial differential
ecluatior. of second order.

coefficients of the differential equation in
normal form.

coefficient of the differential equation of
the flow iu normal form.

small deflection angle.

deflection anqle of the flow without dissipa-
tion.

deflection angle for hydraulic jump.

the hydraulic jump wave front.

loundary-layer thickness.

constants of the affine velocity
profiles.

volume boundary-layer thickness.

momentum %oundary-layer thickness.

tangent intercept.

--
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A++ 1,
w.—

2

(deg.)—-—

0
i
2
3
4
~

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
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TABLE II

——-— -——_—
h .— c

h~ C=P

—.

2//3 1.000
).6241.062
.598 1.101
,576 1.i29
,555 1*156
.535 1.182
,516 1.207
.498 1.229
● 481 le249
● 464 1.269
.448 1.288
.432 1.306
.417 1.323
● 402 10340
.387 1.356
●373 1.3’72
.359 1,387
.34!51● 402
.331 1.416

1

.318 1.430

.305 1C444

.292 1.457

.280 le470
,268 1.482
.256 1.494
.245 1s505

Water,

———-

M=~

1● 000
1,098

1.160
1.214
1.267
1.319
1.371
1.422
1 ● 470

1.520
1.570
1*622
1.674
1.727
1.781
1.835
1.89
1.95
2.01
2.07
2.13
2.20
2.27
2.34
2.‘:1
2..$8

—.

.-— —.

K

—.—
03

2.58

2.07
1.40
1.014
.758
.590
.4.76
.3’34
.318
.263
.215
.170
.133
.103
.072
.046
.020

-.004
-0028
-,050
-.071
--*O89
-.108
-*12e
-.143

k=2

_—— —
~ = A+p

-72-

(deg.)

26
.27
28
2!3
30
31
32
33
34

35
36
37
38
39
40
41
42
43
4A

45
46
47
48
49
50

~~o y!

.—_-.—.

.——
h

r.

).234
,223

●212
.201
.190
.180
,170
.160
.151
.141
.132
.123
.115
.107
.099
.092
.085
.078
.072
.066
.060
.054
.048
.043
.038

0

——-—
c

F.=_

a’

——

1.516
1,527
1,538
1.549
1*559
1.569
1.579
1.588
1.597
i.605
1.613
1.621
1.629
1.637
1.644
1.:;51
1.657
1,663
1.6 (;9
1.575
1..!581
1.686
1.691
1.696
1.700
JT-

——

.- ——-
C

![=_
a

——

2:56
2.64
2.73
2.82
2.92
3.02
3.13
3.24

3.36
3.49
3663
3.78
3.93
~eol

4.26
4.44
4.63
4,85
5.08
5.33
5.62
5.95
6.30
6.68
7.11
al

-——.—

K

.—

,0.160
-,177
-.196
-.216
-.234
-.252
-.271
-.291
-.313
-.S36
-.36
-.38
-.40
-e43
-.46’
-.49

-.52
-.54
-.58
-*f52
-.66
-.70
-.75
-081
-.86
-m

(For table I, see Part I, T,jf. No. 934)
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TA3LE III

55.

,. .... . ..—. .. .. .._ ... ... . .,,...

dw)/d (h/hO) = ,fi @%-:-iJZ:/2 (1 - h/ho) ~i; (loO)

.— —____

h/h.

2/3

0.65

.625

.60

.575

.55

.525

.5

.45

.4

.35

.3

.25

.2

.15

.1

.07

0

.— _____

.—— ————_...——.

dw/d(h/ho)

o

22.70/1

34.20/1

41.4

46.6

50.8

54.2

57.4

62.7

67.6

7~*7

78.4

85.6

94.8

108

131

156

m

--.. —————_____

d(h/ho)/dw
...——— —. —— --

Cu

0.0441/0

.0292/0

.0242

. 0214

. 0197

.0184

.0174

.0159

. 0148

.“01375

.01276

.01168

.01054

.00923

.00762

.00642

0

II —
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TABLE IV,, .,, ,. .

Normal Hydraulic Jump
—----

El
.——— —

1.0
1.02
l.o~

1.06
1.08
1.10
1*12

1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.78

1.40
1.45
1.50
1.55
1.60
1,65
1.70

.————_.

Ml

1.0
1.932
1.063
1,093
1.1.27
1.161
1.198
1. ’237
1.276
1.318
1.359
lo4~4

1.448
1.498
1.550
1.608
1.667
1.730
1.796
1.867
1.942
2.164
2.45
2.84
3.41
4.43
7.25

..—
?J3 ~ CJ

.——. ——— ———. ..

.———————---__— —._—..-

0.667
.655

i

.639

.625

.611

.597

.582

.567

.552

.536
520 \
:504 [
48’7 !
:472 I
.454
.437
.419 I
.491 I
.383 I
.366 \

.300

.250

.199
147
:092
.036 ,

0 I

1.0
.980
.960
.941
.922
.903
.884
.865
846
:827
.808
.789
.770
.751
.731
.712
.692
.672
.652
632
:611
.557
.5?0
.438
.368

.285

.174

0
-—-.—————d ———.-————-

———-———

hz/ho
_——-— ——

0.667
.679
.692
.704
.715
.726
.737
● 747
.756
.765
.772
.779
.785
.791
.795
.7cl8

.799

.800

.799

.798

.795

.778

.751

.706

.640

.542

.36

0
——————-

Before jump: ‘ho, total head
iiz , velocity referred to
a*l, critica,l velocity
M~ , Mach number
Ill, water depth

After jurlp: ho f, total head
u.Gq ~ velocity referred to

h 29 water depth

——————.—.

ho I/h.

1.0
1.000
.999
.999
.998
.998
.997
.996
.994
.993
.990
.987
.983
.979
.973
.967
.959
.951
.941
.931
.919
● 881
.834
.770
.685
.566
.369

Cl
———————.

a*l

a*l

———————
——
u1u2q

-—————

1.000
1.000
.999
.997
.995
993
:990
986
:981
.976
.970
.963
.955
.946
.936
.925
.914
.901
.887
.872
.855
.808
.750
.679
.589
.4’70

.296

0
——— ———_—

Ill —.
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Figure 36.- Slant hydraulic jump.

Figure 225. - Right
(orthogon-

al) hydraulic jump.

/
A

Side wall s

Figure 37.- Slant hydraulic jump
(ground plan).

v
A

*

o ‘+9 I u,. c, ,- -U

*~

Figure 38.- Hydraulic jump in vel-
ocity diagram. Shock
polar.
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.

Figure 39.- Shock polar diagram for water.

Figure 45.. Lines of constant water depth after the jump.

o

Figure 46~_ Lines of constant total depth after the jump.

u
o Q

rigure 47.- Boundary line between stretiing and shooting after the jump.

I
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Y

.: ~
i P

d~-< t

0
—c + c

Figure 40.- t, c-curve.
Figure 41.. Character of
the t, c-curve (c2m~2g~.
to=gh#2) ●

Figure 42.- Right Figure 43.- t-hill.
hydraxlic

$JW? in t,c-di~,rm.

Figure 44

(see fig.

.- General
jump in

38).

v o

E,

P

~

hydrmlic
plan form

.—



flow about 6m edge.
#J

‘. .-‘. ,,

M=2 x .
M=3

.

Q84

Figure 48.-
.,6- “.

==e “O’’’O’”

Disturbancewave

strikinga vortex

. i

\ /

Figure 51.- wave awl
voztex sheet.

1

3

2

f

Comparisonof (a) characteristick=2.
(q-
for

shock polai for water and (c) - 0

1,

@M (’=2).
\

\

I

\

Shock curve for
wg3te* \

o
~ Ula;

f b6-

1

I

I
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Tigure 54.- Refractionand reflectionof
wave. tita vortex sheet.
wall,

$

\,\
\

.

0

Figure 55.- Reflectionofs
hydraulicjump

S’igure56.- Critical$ampangle
as a function of the

flow of approach.
(a) Simple jump.
(b) Jump reflection (for water).

A

o

Cn
M
ul

Figure 57.- Crossingof two jumps..(Inthis
figure D~ and El are drawn sep-

-illarated though D~ practicallycoincideswith EI). +

“Ul
u!

“o
m.
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Deflection vane in.a channel with
shooting water. Top: hydraulic
and di.sturbaqcelines, bottom:
itream lines (20 steps).

61

/

~g%

~o$*%
-— —_

a....,.
~:tl,:. ~~e

— . .—..._.___.2 p j D;/
A b-” “&R,

\
/ .,. ,

‘5
Figure 58.- Overtaking of two hydraulic jumps,

<Q
..~ /--””

A ._._._vort-
sheet

c “<...-.
‘R

s

——..—---
——__

‘A
‘d

(1) Crossing
(2) and (3) overtaking

Incident jump
n disturbance

1ine●

Resulting jump
tt disturbance

1ine

Figure 59.- Jump and
disturbance line.

Figure 60.. Determination of the
order of magnitude

in the overtaking of a di6turb.
ante line and a hydraulic jump.

Figure 62.-X.surface of the
Laval nozzle. (x=O,

y=O in minimum cross section
in center of channel).

9
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Figure 66.- Test
set-up.

Figure 63..

an orifice.

Flow
from

~rom the pump

0,

\ _
.

45 6 7 8 21

-.’ ~

f-
1

Figure 71.. Boundary layer in the
minimum cross section.

1

Zigare 70.. Boundary layer.

I F
Level limes

$2”‘O’

+o”—o-
0

f 101
-210f

Figure 64.-%-surface of an orifice
for the reg%on near the

exit cross section.

Figure 65..x-surface of the level
drop about an edge.

1
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Figure 68.- Test nozzle seen
from the nozzle

end. Measurement of the water
surfa~t~.

Figs. 6?,68,69,75.76

Figure 67.- Test nozzle seen
from above.

Figure 69.- Boundary layer
measurement.

~Jump angle
I

90°.
‘a...=.,-

45° /

i

htlho Weter depth
to

I
1

Streaming

-.-J-.

Q5

01 lo”_fl 20” 01 lb”_p 2b”’

Figure 75.- ~draulic jump.

h.fmml lh 1 h* — Theory
t6q3 ––– Experiment

10
/

cm
t+,

fog

% ~
79
70,1 5
6i5> Figure 76.- Water depths54347> in minimum348
% I cross section. (a) water
;;:,; , surface in the region

1 ! I 1 0 of minimum cross section
1 2cmx 5 fo _~O f5cm (x=O). (b) h*=f(ho).o 0
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dly’&A

— From boundary leyer.measurement.
—.-........_ _, ... . n direct measurement.,,,. . . . .... ./’.

/
Q2

,,4

Figure %3.”-Cneck the relatioq
between the bounda~

0,1 l~er thickness amithe slope of
the surface from equation (114).

.
.

>“.-
01

a

b

Figure 73.-

hO=80 mm Equ;disfomce 0,1 und 0,.?mm

mm ~cSv
2

I_ ~

o — 10 cm — —x
WZ7fmum cross se.=+1.on

Side wall boundary layer.(a) total surface,(b) value averaged
over ’thedepth.

Boundat-y iayer fhickmess l-c--l

he= 80,5mm &uidt.#fence 0.05 und O,lmm

Figure ?4.- Bottom boundary layer surface.

11
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Me&rod &t ~=31* 1 m

,. Figure 77.- Actual ?kV8.1

,.. lines (steps
.. contours●

..

nozzle. (a)
1/2 degree)

Disturbance
(b) depth

OJ.7

\
\ 0.5

0- “~d~
\ .

. -----
0.7

-- ~-
0.3.

0.5 1.

h.=39.8 m o
c 0’.?

-’%
%

005
o’; mm

0,7 ,
O—a—0—.

0.3

k

k I A-
0.1 Minipum

End of n
cro8s sec%+on ““lq 1

- kloclld

Figure 79. -

T

Water depth ratio along
the noszle axis. -$
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:.. s.

b)

a) hO=99,7m,Equidis foRcc I mm Masstab 1:2

?@. 78 ●,b,c

& 8Q2mm Equid{s~+omce0.5 und Imm

Figure 78m-f.-Measured water surfaces.
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d) &3$83mm E’qukfi=funceo,z UndO,smm

3ig. ?8 d,e,f

Figure 78a-f.- concluded
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Figure 80.- Flow through the no~zle
viewed from the nozzle

end.

Figs. @0,82,83,84,85

Figure 83.- Bullet in air.

,.
1

Figure EK&Lc. Fi~.lre82b.-

Figure 82.- Tapered body in water. Shock wave starts from the tip.

Figure 9~.- -

angle above

Figure 85.
Tapered bc

Tapered body set is-greater than the c~itical angle
obliquely, shock of the flow; shock wave released by
critical. body.

. ....- .—— —--— ,-.
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a

c

e

Fig. 81

Figure 81a-h.- Various conditions at the nozzle exit.

b

d

f

h
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